Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxins (Basel) ; 16(6)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38922134

RESUMO

Venom plays a crucial role in the defense and predation of venomous animals. Spiders (Araneae) are among the most successful predators and have a fascinating venom composition. Their venom mainly contains disulfide-rich peptides and large proteins. Here, we analyzed spider venom protein families, utilizing transcriptomic and genomic data, and highlighted their similarities and differences. We show that spiders have specific combinations of toxins for better predation and defense, typically comprising a core toxin expressed alongside several auxiliary toxins. Among them, the CAP superfamily is widely distributed and highly expressed in web-building Araneoidea spiders. Our analysis of evolutionary relationships revealed four subfamilies (subA-subD) of the CAP superfamily that differ in structure and potential functions. CAP proteins are composed of a conserved CAP domain and diverse C-terminal domains. CAP subC shares similar domains with the snake ion channel regulator svCRISP proteins, while CAP subD possesses a sequence similar to that of insect venom allergen 5 (Ag5). Furthermore, we show that gene duplication and selective expression lead to increased expression of CAP subD, making it a core member of the CAP superfamily. This study sheds light on the functional diversity of CAP subfamilies and their evolutionary history, which has important implications for fully understanding the composition of spider venom proteins and the core toxin components of web-building spiders.


Assuntos
Evolução Molecular , Venenos de Aranha , Aranhas , Venenos de Aranha/genética , Venenos de Aranha/química , Animais , Aranhas/genética , Filogenia , Transcriptoma , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/química , Sequência de Aminoácidos
2.
Nat Commun ; 14(1): 837, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36792670

RESUMO

The process of natural silk production in the spider major ampullate (Ma) gland endows dragline silk with extraordinary mechanical properties and the potential for biomimetic applications. However, the precise genetic roles of the Ma gland during this process remain unknown. Here, we performed a systematic molecular atlas of dragline silk production through a high-quality genome assembly for the golden orb-weaving spider Trichonephila clavata and a multiomics approach to defining the Ma gland tri-sectional architecture: Tail, Sac, and Duct. We uncovered a hierarchical biosynthesis of spidroins, organic acids, lipids, and chitin in the sectionalized Ma gland dedicated to fine silk constitution. The ordered secretion of spidroins was achieved by the synergetic regulation of epigenetic and ceRNA signatures for genomic group-distributed spidroin genes. Single-cellular and spatial RNA profiling identified ten cell types with partitioned functional division determining the tri-sectional organization of the Ma gland. Convergence analysis and genetic manipulation further validated that this tri-sectional architecture of the silk gland was analogous across Arthropoda and inextricably linked with silk formation. Collectively, our study provides multidimensional data that significantly expand the knowledge of spider dragline silk generation and ultimately benefit innovation in spider-inspired fibers.


Assuntos
Artrópodes , Fibroínas , Aranhas , Animais , Seda/genética , Fibroínas/genética , Fibroínas/metabolismo , Genoma , Artrópodes/genética , Aranhas/genética , Aranhas/metabolismo
3.
Front Genet ; 12: 719204, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34484306

RESUMO

Retrocopies, which are considered "junk genes," are occasionally formed via the insertion of reverse-transcribed mRNAs at new positions in the genome. However, an increasing number of recent studies have shown that some retrocopies exhibit new biological functions and may contribute to genome evolution. Hence, the identification of retrocopies has become very meaningful for studying gene duplication and new gene generation. Current pipelines identify retrocopies through complex operations using alignment programs and filter scripts in a step-by-step manner. Therefore, there is an urgent need for a simple and convenient retrocopy annotation tool. Here, we report the development of RetroScan, a publicly available and easy-to-use tool for scanning, annotating and displaying retrocopies, consisting of two components: an analysis pipeline and a visual interface. The pipeline integrates a series of bioinformatics software programs and scripts for identifying retrocopies in just one line of command. Compared with previous methods, RetroScan increases accuracy and reduces false-positive results. We also provide a Shiny app for visualization. It displays information on retrocopies and their parental genes that can be used for the study of retrocopy structure and evolution. RetroScan is available at https://github.com/Vicky123wzy/RetroScan.

4.
Comput Struct Biotechnol J ; 19: 600-611, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33510865

RESUMO

Retroduplication variation (RDV), a type of retrocopy polymorphism, is considered to have essential biological significance, but its effect on gene function and species phenotype is still poorly understood. To this end, we analyzed the retrocopies and RDVs in 3,010 rice genomes. We calculated the RDV frequencies in the genome of each rice population; detected the mutated, ancestral and expressed retrogenes in rice genomes; and analyzed their RDV influence on rice phenotypic traits. Collectively, 73 RDVs were identified, and 14 RDVs in ancestral retrogenes can significantly affect rice phenotypes. Our research reveals that RDV plays an important role in rice migration, domestication and evolution. We think that RDV is a good molecular breeding marker candidate. To our knowledge, this is the first study on the relationship between retrogene function, expression, RDV and species phenotype.

5.
Nucleic Acids Res ; 48(D1): D749-D755, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31642484

RESUMO

SilkDB is an open-accessibility database and powerful platform that provides comprehensive information on the silkworm (Bombyx mori) genome. Since SilkDB 2.0 was released 10 years ago, vast quantities of data about multiple aspects of the silkworm have been generated, including genome, transcriptome, Hi-C and pangenome. To visualize data at these different biological levels, we present SilkDB 3.0 (https://silkdb.bioinfotoolkits.net), a visual analytic tool for exploring silkworm data through an interactive user interface. The database contains a high-quality chromosome-level assembly of the silkworm genome, and its coding sequences and gene sets are more accurate than those in the previous version. SilkDB 3.0 provides a view of the information for each gene at the levels of sequence, protein structure, gene family, orthology, synteny, genome organization and gives access to gene expression information, genetic variation and genome interaction map. A set of visualization tools are available to display the abundant information in the above datasets. With an improved interactive user interface for the integration of large data sets, the updated SilkDB 3.0 database will be a valuable resource for the silkworm and insect research community.


Assuntos
Bombyx/genética , Biologia Computacional/métodos , Bases de Dados Genéticas , Genoma de Inseto , Transcriptoma , Animais , Teorema de Bayes , Mapeamento Cromossômico , Cromossomos/genética , Gráficos por Computador , Éxons , Perfilação da Expressão Gênica , Variação Genética , Genômica , Íntrons , Filogenia , Interface Usuário-Computador
6.
Nucleic Acids Res ; 47(W1): W52-W58, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31053848

RESUMO

OrthoVenn is a powerful web platform for the comparison and analysis of whole-genome orthologous clusters. Here we present an updated version, OrthoVenn2, which provides new features that facilitate the comparative analysis of orthologous clusters among up to 12 species. Additionally, this update offers improvements to data visualization and interpretation, including an occurrence pattern table for interrogating the overlap of each orthologous group for the queried species. Within the occurrence table, the functional annotations and summaries of the disjunctions and intersections of clusters between the chosen species can be displayed through an interactive Venn diagram. To facilitate a broader range of comparisons, a larger number of species, including vertebrates, metazoa, protists, fungi, plants and bacteria, have been added in OrthoVenn2. Finally, a stand-alone version is available to perform large dataset comparisons and to visualize results locally without limitation of species number. In summary, OrthoVenn2 is an efficient and user-friendly web server freely accessible at https://orthovenn2.bioinfotoolkits.net.


Assuntos
Biologia Computacional , Genoma/genética , Genômica/métodos , Software , Animais , Bactérias/genética , Bases de Dados Genéticas , Fungos/genética , Humanos , Internet , Anotação de Sequência Molecular , Plantas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...