Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(25): 17769-17776, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38873788

RESUMO

Perovskites exhibit considerable potential as catalysts for various applications, yet their performance modulation in the carbon dioxide reduction reaction (CO2RR) remains underexplored. In this study, we report a strategy to enhance the electrocatalytic carbon dioxide (CO2) reduction activity via Ce-doped La2CuO4 (LCCO) and Sr-doped La2CuO4 (LSCO) perovskite oxides. Specifically, compared to pure phase La2CuO4 (LCO), the Faraday efficiency (FE) for CH4 of LCCO at -1.4 V vs. RHE (reversible hydrogen electrode) is improved from 38.9% to 59.4%, and the FECO2RR of LSCO increased from 68.8% to 85.4%. In situ attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy spectra results indicate that the doping of A-site ions promotes the formation of *CHO and *HCOO, which are key intermediates in the production of CH4, compared to the pristine La2CuO4. X-ray photoelectron spectroscopy (XPS), electron paramagnetic resonance (EPR), and double-layer capacitance (Cdl) outcomes reveal that heteroatom-doped perovskites exhibit more oxygen vacancies and higher electrochemical active surface areas, leading to a significant improvement in the CO2RR performance of the catalysts. This study systematically investigates the effect of A-site ion doping on the catalytic activity center Cu and proposes a strategy to improve the catalytic performance of perovskite oxides.

2.
J Nanosci Nanotechnol ; 21(11): 5776-5783, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-33980392

RESUMO

THIS ARTICLE WAS WITHDRAWN BY THE PUBLISHER IN MAY 2021

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...