Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 15(8): 4006-4013, 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36727303

RESUMO

Chip-based impact electrochemistry can provide means to measure nanoparticles in solution by sensing their stochastic collisions on appropriately-polarized microelectrodes. However, a planar microelectrode array design still restricts the particle detection to the chip surface and does not allow detection in 3D environments. In this work, we report a fast fabrication process for 3D microelectrode arrays by combining ink-jet printing with laser-patterning. To this end, we printed 3D pillars from polyacrylate ink as a scaffold. Then, the metal structures are manufactured via sputtering and laser-ablation. Finally, the chip is passivated with a parylene-C layer and the electrode tips are created via laser-ablation in a vertical alignment. As a proof of principle, we employ our 3D micro-ring-electrode arrays for single impact recordings from silver nanoparticles.

2.
Adv Healthc Mater ; 12(17): e2202869, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36827235

RESUMO

The use of soft and flexible bioelectronic interfaces can enhance the quality for recording cells' electrical activity by ensuring a continuous and intimate contact with the smooth, curving surfaces found in the physiological environment. This work develops soft microelectrode arrays (MEAs) made of silk fibroin (SF) films for recording interfaces that can also serve as a drug delivery system. Inkjet printing is used as a tool to deposit the substrate, conductive electrode, and insulator, as well as a drug-delivery nanocomposite film. This approach is highly versatile, as shown in the fabrication of carbon microelectrodes, sandwiched between a silk substrate and a silk insulator. The technique permits the development of thin-film devices that can be employed for in vitro extracellular recordings of HL-1 cell action potentials. The tuning of SF by applying an electrical stimulus to produce a permeable layer that can be used in on-demand drug delivery systems is also demonstrated. The multifunctional MEA developed here can pave the way for in vitro drug screening by applying time-resolved and localized chemical stimuli.


Assuntos
Fibroínas , Seda , Microeletrodos , Sistemas de Liberação de Medicamentos , Condutividade Elétrica
3.
J Nanobiotechnology ; 20(1): 491, 2022 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-36403048

RESUMO

An increasing demand for bioelectronics that interface with living systems has driven the development of materials to resolve mismatches between electronic devices and biological tissues. So far, a variety of different polymers have been used as substrates for bioelectronics. Especially, biopolymers have been investigated as next-generation materials for bioelectronics because they possess interesting characteristics such as high biocompatibility, biodegradability, and sustainability. However, their range of applications has been restricted due to the limited compatibility of classical fabrication methods with such biopolymers. Here, we introduce a fabrication process for thin and large-area films of chitosan nanofibers (CSNFs) integrated with conductive materials. To this end, we pattern carbon nanotubes (CNTs), silver nanowires, and poly (3,4-ethylenedioxythiophene):poly (styrenesulfonate) (PEDOT:PSS) by a facile filtration process that uses polyimide masks fabricated via laser ablation. This method yields feedlines of conductive material on nanofiber paper and demonstrates compatibility with conjugated and high-aspect-ratio materials. Furthermore, we fabricate a CNT neural interface electrode by taking advantage of this fabrication process and demonstrate peripheral nerve stimulation to the rapid extensor nerve of a live locust. The presented method might pave the way for future bioelectronic devices based on biopolymer nanofibers.


Assuntos
Nanofibras , Nanotubos de Carbono , Nanofios , Biomassa , Prata , Eletrodos
4.
ACS Sens ; 7(7): 1967-1976, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35801574

RESUMO

This work demonstrates a lateral flow assay concept on the basis of stochastic-impact electrochemistry. To this end, we first elucidate requirements to employ silver nanoparticles as redox-active labels. Then, we present a prototype that utilizes nanoimpacts from biotinylated silver nanoparticles as readouts to detect free biotin in solution based on competitive binding. The detection is performed in a membrane-based microfluidic system, where free biotin and biotinylated particles compete for streptavidin immobilized on embedded latex beads. Excess nanoparticles are then registered downstream at an array of detection electrodes. In this way, we establish a proof of concept that serves as a blueprint for future "digital" lateral flow sensors.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Ligação Competitiva , Biotina , Eletroquímica , Prata
5.
Anal Chem ; 94(33): 11600-11609, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35900877

RESUMO

Single-entity electrochemistry is a powerful technique to study the interactions of nanoparticles at the liquid-solid interface. In this work, we exploit Faradaic (background) processes in electrolytes of moderate ionic strength to evoke electrokinetic transport and study its influence on nanoparticle impacts. We implemented an electrode array comprising a macroscopic electrode that surrounds a set of 62 spatially distributed microelectrodes. This configuration allowed us to alter the global electrokinetic transport characteristics by adjusting the potential at the macroscopic electrode, while we concomitantly recorded silver nanoparticle impacts at the microscopic detection electrodes. By focusing on temporal changes of the impact rates, we were able to reveal alterations in the macroscopic particle transport. Our findings indicate a potential-dependent micropumping effect. The highest impact rates were obtained for strongly negative macroelectrode potentials and alkaline solutions, albeit also positive potentials lead to an increase in particle impacts. We explain this finding by reversal of the pumping direction. Variations in the electrolyte composition were shown to play a critical role as the macroelectrode processes can lead to depletion of ions, which influences both the particle oxidation and the reactions that drive the transport. Our study highlights that controlled on-chip micropumping is possible, yet its optimization is not straightforward. Nevertheless, the utilization of electro- and diffusiokinetic transport phenomena might be an appealing strategy to enhance the performance in future impact-based sensing applications.


Assuntos
Nanopartículas Metálicas , Prata , Eletroquímica/métodos , Eletrólitos , Nanopartículas Metálicas/química , Microeletrodos , Oxirredução
6.
Front Hum Neurosci ; 16: 809293, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35721351

RESUMO

Virtual reality environments offer great opportunities to study the performance of brain-computer interfaces (BCIs) in real-world contexts. As real-world stimuli are typically multimodal, their neuronal integration elicits complex response patterns. To investigate the effect of additional auditory cues on the processing of visual information, we used virtual reality to mimic safety-related events in an industrial environment while we concomitantly recorded electroencephalography (EEG) signals. We simulated a box traveling on a conveyor belt system where two types of stimuli - an exploding and a burning box - interrupt regular operation. The recordings from 16 subjects were divided into two subsets, a visual-only and an audio-visual experiment. In the visual-only experiment, the response patterns for both stimuli elicited a similar pattern - a visual evoked potential (VEP) followed by an event-related potential (ERP) over the occipital-parietal lobe. Moreover, we found the perceived severity of the event to be reflected in the signal amplitude. Interestingly, the additional auditory cues had a twofold effect on the previous findings: The P1 component was significantly suppressed in the case of the exploding box stimulus, whereas the N2c showed an enhancement for the burning box stimulus. This result highlights the impact of multisensory integration on the performance of realistic BCI applications. Indeed, we observed alterations in the offline classification accuracy for a detection task based on a mixed feature extraction (variance, power spectral density, and discrete wavelet transform) and a support vector machine classifier. In the case of the explosion, the accuracy slightly decreased by -1.64% p. in an audio-visual experiment compared to the visual-only. Contrarily, the classification accuracy for the burning box increased by 5.58% p. when additional auditory cues were present. Hence, we conclude, that especially in challenging detection tasks, it is favorable to consider the potential of multisensory integration when BCIs are supposed to operate under (multimodal) real-world conditions.

7.
ACS Sens ; 7(3): 884-892, 2022 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-35235291

RESUMO

Microfluidic paper-based analytical devices (µPADs) have experienced an unprecedented story of success. In particular, as of today, most people have likely come into contact with one of their two most famous examples─the pregnancy or the SARS-CoV-2 antigen test. However, their sensing performance is constrained by the optical readout of nanoparticle agglomeration, which typically allows only qualitative measurements. In contrast, single-impact electrochemistry offers the possibility to quantify species concentrations beyond the pM range by resolving collisions of individual species on a microelectrode. Within this work, we investigate the integration of stochastic sensing into a µPAD design by combining a wax-patterned microchannel with a microelectrode array to detect silver nanoparticles (AgNPs) by their oxidative dissolution. In doing so, we demonstrate the possibility to resolve individual nanoparticle collisions in a reference-on-chip configuration. To simulate a lateral flow architecture, we flush previously dried AgNPs along a microchannel toward the electrode array, where we are able to record nanoparticle impacts. Consequently, single-impact electrochemistry poses a promising candidate to extend the limits of lateral flow-based sensors beyond current applications toward a fast and reliable detection of very dilute species on site.


Assuntos
COVID-19 , Nanopartículas Metálicas , Eletroquímica , Feminino , Humanos , Microeletrodos , Microfluídica , Gravidez , SARS-CoV-2 , Prata
8.
Sensors (Basel) ; 21(12)2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34207725

RESUMO

Recent investigations into cardiac or nervous tissues call for systems that are able to electrically record in 3D as opposed to 2D. Typically, challenging microfabrication steps are required to produce 3D microelectrode arrays capable of recording at the desired position within the tissue of interest. As an alternative, additive manufacturing is becoming a versatile platform for rapidly prototyping novel sensors with flexible geometric design. In this work, 3D MEAs for cell-culture applications were fabricated using a piezoelectric inkjet printer. The aspect ratio and height of the printed 3D electrodes were user-defined by adjusting the number of deposited droplets of silver nanoparticle ink along with a continuous printing method and an appropriate drop-to-drop delay. The Ag 3D MEAs were later electroplated with Au and Pt in order to reduce leakage of potentially cytotoxic silver ions into the cellular medium. The functionality of the array was confirmed using impedance spectroscopy, cyclic voltammetry, and recordings of extracellular potentials from cardiomyocyte-like HL-1 cells.


Assuntos
Nanopartículas Metálicas , Técnicas de Cultura de Células , Espectroscopia Dielétrica , Microeletrodos , Prata
9.
ACS Appl Mater Interfaces ; 11(36): 32778-32786, 2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31424902

RESUMO

Microelectrode arrays (MEAs) are widely used platforms in bioelectronics to study electrogenic cells. In recent years, the processing of conductive polymers for the fabrication of three-dimensional electrode arrays has gained increasing interest for the development of novel sensor designs. Here, additive manufacturing techniques are promising tools for the production of MEAs with three-dimensional electrodes. In this work, a facile additive manufacturing process for the fabrication of MEAs that feature needle-like electrode tips, so-called µ-needles, is presented. To this end, an aerosol-jet compatible PEDOT:PSS and multiwalled carbon nanotube composite ink with a conductivity of 323 ± 75 S m-1 is developed and used in a combined inkjet and aerosol-jet printing process to produce the µ-needle electrode features. The µ-needles are fabricated with a diameter of 10 ± 2 µm and a height of 33 ± 4 µm. They penetrate an inkjet-printed dielectric layer to a height of 12 ± 3 µm. After successful printing, the electrochemical properties of the devices are assessed via cyclic voltammetry and impedance spectroscopy. The µ-needles show a capacitance of 242 ± 70 nF at a scan rate of 5 mV s-1 and an impedance of 128 ± 22 kΩ at 1 kHz frequency. The stability of the µ-needle MEAs in aqueous electrolyte is demonstrated and the devices are used to record extracellular signals from cardiomyocyte-like HL-1 cells. This proof-of-principle experiment shows the µ-needle MEAs' cell-culture compatibility and functional integrity to investigate electrophysiological signals from living cells.


Assuntos
Condutividade Elétrica , Eletrônica , Tinta , Agulhas , Polímeros/química , Animais , Compostos Bicíclicos Heterocíclicos com Pontes/química , Eletroquímica , Camundongos , Microeletrodos , Nanotubos de Carbono/química , Poliestirenos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...