Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 11(12): 8238-8253, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34188883

RESUMO

Conifers often occur along steep gradients of diverse climates throughout their natural ranges, which is expected to result in spatially varying selection to local climate conditions. However, signals of climatic adaptation can often be confounded, because unraveled clines covary with signals caused by neutral evolutionary processes such as gene flow and genetic drift. Consequently, our understanding of how selection and gene flow have shaped phenotypic and genotypic differentiation in trees is still limited.A 40-year-old common garden experiment comprising 16 Douglas-fir (Pseudotsuga menziesii) provenances from a north-to-south gradient of approx. 1,000 km was analyzed, and genomic information was obtained from exome capture, which resulted in an initial genomic dataset of >90,000 single nucleotide polymorphisms. We used a restrictive and conservative filtering approach, which permitted us to include only SNPs and individuals in environmental association analysis (EAA) that were free of potentially confounding effects (LD, relatedness among trees, heterozygosity deficiency, and deviations from Hardy-Weinberg proportions). We used four conceptually different genome scan methods based on FST outlier detection and gene-environment association in order to disentangle truly adaptive SNPs from neutral SNPs.We found that a relatively small proportion of the exome showed a truly adaptive signal (0.01%-0.17%) when population substructuring and multiple testing was accounted for. Nevertheless, the unraveled SNP candidates showed significant relationships with climate at provenance origins, which strongly suggests that they have featured adaptation in Douglas-fir along a climatic gradient. Two SNPs were independently found by three of the employed algorithms, and one of them is in close proximity to an annotated gene involved in circadian clock control and photoperiodism as was similarly found in Populus balsamifera. Synthesis. We conclude that despite neutral evolutionary processes, phenotypic and genomic signals of adaptation to climate are responsible for differentiation, which in particular explain disparity between the well-known coastal and interior varieties of Douglas-fir.

2.
Evol Appl ; 13(9): 2422-2438, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33005231

RESUMO

Understanding how tree species will respond to a future climate requires reliable and quantitative estimates of intra-specific variation under current climate conditions. We studied three 10-year-old common garden experiments established across a rainfall and drought gradient planted with nearly 10,000 pedunculate oak (Quercus robur L.) trees from ten provenances with known family structure. We aimed at disentangling adaptive and plastic responses for growth (height and diameter at breast height) as well as for leaf and wood functional traits related to adaptation to dry environments. We used restricted maximum likelihood approaches to assess additive genetic variation expressed as narrow-sense heritability (h2), quantitative trait differentiation among provenances (QST), and genotype-by-environment interactions (GxE). We found strong and significant patterns of local adaptation in growth in all three common gardens, suggesting that transfer of seed material should not exceed a climatic distance of approximately 1°C under current climatic conditions, while transfer along precipitation gradients seems to be less stringent. Moreover, heritability reached 0.64 for tree height and 0.67 for dbh at the dry margin of the testing spectrum, suggesting significant additive genetic variation of potential use for future selection and tree breeding. GxE interactions in growth were significant and explained less phenotypic variation than origin of seed source (4% versus 10%). Functional trait variation among provenances was partly related to drought regimes at provenances origins but had moderate explanatory power for growth. We conclude that directional selection, either naturally or through breeding, is the most likely and feasible outcome for pedunculate oak to adapt to warmer and drier climate conditions in the future.

3.
Tree Physiol ; 37(1): 33-46, 2017 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-28173601

RESUMO

Assessing intra-specific variation in drought stress response is required to mitigate the consequences of climate change on forest ecosystems. Previous studies suggest that European larch (Larix decidua Mill.), an important European conifer in mountainous and alpine forests, is highly vulnerable to drought. In light of this, we estimated the genetic variation in drought sensitivity and its degree of genetic determination in a 50-year-old common garden experiment in the drought-prone northeastern Austria. Tree ring data from larch provenances originating from across the species' natural range were used to estimate the drought reaction in four consecutive drought events (1977, 1981, 1990­1994, and 2003) with extremely low standardized precipitation- and evapotranspiration-index values that affected growth in all provenances. We found significant differences among provenances across the four drought periods for the trees' capacity to withstand drought (resistance) and for their capacity to reach pre-drought growth levels after drought (resilience). Provenances from the species' northern distribution limit in the Polish lowlands were found to be more drought resistant and showed higher stability across all drought periods than provenances from mountainous habitats at the southern fringe. The degree of genetic determination, as estimated by the repeatability, ranged up to 0.39, but significantly differed among provenances, indicating varying degrees of natural selection at the provenance origin. Generally, the relationship between the provenances' source climate and drought behavior was weak, suggesting that the contrasting patterns of drought response are a result of both genetic divergence out of different refugial lineages and local adaptation to summer or winter drought conditions. Our analysis suggests that European larch posseses high genetic variation among and within provenances that can be used for assisted migration and breeding programs.


Assuntos
Variação Biológica da População , Secas , Variação Genética , Larix/genética , Europa (Continente) , Larix/fisiologia , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...