Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 57(47): 5826-5829, 2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-34002193

RESUMO

Hydroxypropyl cellulose (HPC) and arylazopyrazole (AAP) mixtures can be remotely controlled by light and temperature. We show that the hydrophobic interactions between HPC polymers with AAP surfactants can be drastically changed by changing the surfactants configuration through E/Z photo-isomerization. E-AAP interacts strongly with HPC which causes a dramatic increase of the critical temperature Tc of the polymers' phase transition and a loss of the coil-to-globule transition, while the hydrophobic interactions of HPC with Z-AAP are drastically reduced. As a result, E/Z photo-isomerization of AAP in mixtures with HPC offers remote control of the polymers phase transition, size and solution viscosity in an unprecedented way, and allows for new directions in colloid science.

2.
Molecules ; 24(16)2019 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-31405189

RESUMO

The influence of Li+, Na+ and Cs+ cations on the surface excess and structure of dodecyl sulfate (DS-) anions at the air-water interface was investigated with the vibrational sum-frequency generation (SFG) and surface tensiometry. Particularly, we have addressed the change in amplitude and frequency of the symmetric S-O stretching vibrations as a function of electrolyte and DS- concentration in the presence of Li+, Na+ and Cs+ cations. For the Li+ and Na+ ions, we show that the resonance frequency is shifted noticeably from 1055 cm-1 to 1063 cm-1 as a function of the surfactants' surfaces excess, which we attribute to the vibrational Stark effect within the static electric field at the air-water interface. For Cs+ ions the resonance frequency is independent of the surfactant concentration with the S-O stretching band centered at 1063 cm-1. This frequency is identical to the frequency at the maximum surface excess when Li+ and Na+ ions are present and points to the ion pair formation between the sulfate headgroup and Cs+ counterions, which reduces the local electric field. In addition, SFG experiments of the O-H stretching bands of interfacial H2O molecules are used in order to calculate the apparent double layer potential and the degree of dissociation between the surfactant head group and the investigated cations. The latter was found to be 12.0%, 10.4% and 7.7% for lithium dodecyl sulfate (LiDS), sodium dodecyl sulfate (SDS) and cesium dodecyl sulfate (CsDS) surfactants, which is in agreement with Collins 'rule of matching water affinities'.


Assuntos
Lítio/química , Dodecilsulfato de Sódio/química , Sódio/química , Tensoativos/química , Álcalis/química , Cátions Monovalentes/química
3.
Soft Matter ; 15(13): 2876-2883, 2019 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-30843017

RESUMO

Hydroxypropyl cellulose (HPC) is a surface active polymer that can change its solubility as a function of temperature. This makes HPC interesting for responsive foams, where macroscopic properties need to be reversibly changed on demand. Analysis of aqueous HPC foams as a function of temperature showed a moderate decrease in foam half-life time from 9000 to 4000 s, when the temperature was increased. However, within a narrow temperature range of ±2 °C a dramatic decrease in half-life time to <120 s was observed at 43 °C in the absence and at 31 °C in the presence of 0.7 M NaCl. These drastic changes are highly reversible and are associated to the lower critical solution temperatures (LCST) of HPC in aqueous solutions. In fact, dynamic light scattering experiments indicate that HPC molecules form aggregates at temperatures >31 °C (0.7 M NaCl) and >43 °C (0 M NaCl), which shrink in size when the temperature is increased further. From these results, we conclude that the LCST of 1 MDa HPC is at 43 °C when no salt is present and is at 31 °C in aqueous solutions with 0.7 M NaCl. In addition, shear rheology of bulk solutions and surface tensiometry indicate that the solution's viscosity and the surface pressure dramatically change at the respective LCSTs. Obviously, the solvent's viscosity triggers substantial changes in foam drainage at the LCST, which is shown to be the main driving force for the temperature responsiveness of HPC foams.

4.
J Phys Chem C Nanomater Interfaces ; 123(2): 1279-1286, 2019 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-30713590

RESUMO

Vibrational sum-frequency generation (SFG) spectroscopy is demonstrated as a fast method to quantify variations of the electric double-layer potential ϕ0 at liquid-gas interfaces. For this, mixed solutions of nonionic tetraethyleneglycol-monodecylether (C10E4) and cationic hexadecyltrimethylammonium bromide (C16TAB) surfactants were investigated using SFG spectroscopy and a thin-film pressure balance (TFPB). Derjaguin-Landau-Verwey-Overbeek analysis of disjoining pressure isotherms obtained with the TFPB technique provides complementary information on ϕ0, which we apply to validate the results from SFG spectroscopy. By using a single ϕ0 value, we can disentangle χ(2) and χ(3) contributions to the O-H stretching modes of interfacial water molecules in the SFG spectra. Having established the latter, we show that unknown double-layer potentials at the liquid-gas interface from solutions with different C16TAB/C10E4 mixing ratios can be obtained from an analysis of SFG spectra and are in excellent agreement with the complementary results from the TFPB technique.

5.
J Phys Chem C Nanomater Interfaces ; 121(50): 27992-28000, 2017 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-29285205

RESUMO

Mixed layers of 6-hydroxy-5-[(4-sulfophenyl)azo]-2-naphthalenesulfonate (Sunset Yellow, SSY) and cetyltrimethylammonium bromide (C16TAB) at the air-water interface were studied using vibrational sum-frequency generation (SFG) and dynamic surface tension measurements. In the bulk, addition of C16TAB to SSY aqueous solution causes substantial changes in UV/vis absorption spectra, which originate from strong electrostatic interactions between the anionic SSY azo dye with the cationic C16TAB surfactant. These interactions are a driving force for the formation of SSY/C16TAB ion pairs. The latter are found to be highly surface active while free SSY molecules show no surface activity. Dynamic SFG as well as surface tension measurements at low SSY concentrations reveal that free C16TAB surfactants adsorb at the air-water interface on time scales <1 s where they initially form the dominating surface species, but on longer time scales free C16TAB is exchanged by SSY/C16TAB ion pairs. This causes a dramatic reduction of the surface tension to 35 mN/m but also in foam stability. These changes are accompanied by a substantial loss in SFG intensity from O-H stretching bands around 3200 and 3450 cm-1, which we relate to a decrease in surface charging due to adsorption of ion pairs with no or negligible net charges. For SSY/C16TAB molar ratios >0.5, the O-H bands in SFG spectra are reduced to very low intensities and are indicative to electrically neutral SSY/C16TAB ion pairs. This conclusion is corroborated by an analysis of macroscopic foams, which become highly instable in the presence of neutral SSY/C16TAB ion pairs. From an analysis of SFG spectra of air-water interfaces, we show that the electrostatic repulsion forces inside the ubiquitous foam films are reduced and thus remove the major stabilization mechanism within macroscopic foam.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...