Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 14(9): 5342-9, 2014 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-25133677

RESUMO

Much attention has been paid to metastable materials in the lithium battery field, especially to nanocrystalline and amorphous materials. Nonetheless, fundamental issues such as lithium potential variations have not been pertinently addressed. Using LiFePO4 as a model system, we inspect such lithium potential variations for various lithium storage modes and evaluate them thermodynamically. The conclusions of this work are essential for an adequate understanding of the behavior of electrode materials and even helpful in the search for new energy materials.

2.
J Am Chem Soc ; 134(6): 2988-92, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22191608

RESUMO

Large single crystals of LiFePO(4) have been chemically delithiated. The relevance of chemical oxidation in comparison with electrochemical delithiation is discussed. Analyses of the Li content and profiles were done by electron energy loss spectroscopy and secondary ion mass spectrometry. The propagation of the FePO(4) phase growing on the surface of the large single crystal was followed by in situ optical microscopy as a function of time. The kinetics were evaluated in terms of linear irreversible thermodynamics and found to be characterized by an induction period followed by parabolic growth behavior of the FePO(4) phase indicating transport control. The growth rate was shown to depend on the crystallographic orientation. Scanning electron microscopy images showed cracks and a high porosity of the FePO(4) layer due to the significant changes in the molar volumes. The transport was found to be greatly enhanced by the porosity and crack formation and hence greatly enhanced over pure bulk transport, a result which is supposed to be very relevant for battery research if coarse-grained powder is used.

3.
J Am Chem Soc ; 133(37): 14514-7, 2011 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-21827205

RESUMO

The formation of fractal silica networks from a colloidal initial state was followed in situ by ion conductivity measurements. The underlying effect is a high interfacial lithium ion conductivity arising when silica particles are brought into contact with Li salt-containing liquid electrolytes. The experimental results were modeled using Monte Carlo simulations and tested using confocal fluorescence laser microscopy and ζ-potential measurements.

5.
Dalton Trans ; 39(48): 11513-5, 2010 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-21052591

RESUMO

The synthesis and structure of a dimeric aluminium hydroxide complex containing the novel chelating 1,4-disiloxide ligand [CH(2){Me(Me(3)Si)(2)Si}(2)SiO](2)(2-) (2)-2H is reported. [CH(2){Me(Me(3)Si)(2)Si}(2)SiO](2)AlOH (4) was prepared by careful hydrolysis of [CH(2){Me(Me(3)Si)(2)Si}(2)SiO](2)AlMe·THF (3).

6.
Chemistry ; 16(28): 8347-54, 2010 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-20544750

RESUMO

The atomistic mechanisms of Li(+) ion mobility/conductivity in Li(7-x)PS(6-x)I(x) argyrodites are explored from both experimental and theoretical viewpoints. Ionic conductivity in the title compound is associated with a solid-solid phase transition, which was characterised by low-temperature differential scanning calorimetry, (7)Li and (127)I NMR investigations, impedance measurements and molecular dynamics simulations. The NMR signals of both isotopes are dominated by anisotropic interactions at low temperatures. A significant narrowing of the NMR signal indicates a motional averaging of the anisotropic interactions above 177+/-2 K. The activation energy to ionic conductivity was assessed from both impedance spectroscopy and molecular dynamics simulations. The latter revealed that a series of interstitial sites become accessible to the Li(+) ions, whilst the remaining ions stay at their respective sites in the argyrodite lattice. The interstitial positions each correspond to the centres of tetrahedra of S/I atoms, and differ only in terms of their common corners, edges, or faces with adjacent PS(4) tetrahedra. From connectivity analyses and free-energy rankings, a specific tetrahedron is identified as the key restriction to ionic conductivity, and is clearly differentiated from local mobility, which follows a different mechanism with much lower activation energy. Interpolation of the lattice parameters as derived from X-ray diffraction experiments indicates a homogeneity range for Li(7-x)PS(6-x)I(x) with 0.97 < or = x < or = 1.00. Within this range, molecular dynamics simulations predict Li(+) conductivity at ambient conditions to vary considerably.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...