Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mater Sci Mater Med ; 35(1): 36, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38900219

RESUMO

Calcium phosphate cements, primarily brushite cements, require the addition of setting retarders to ensure adequate processing time and processability. So far, citric acid has been the primary setting retarder used in this context. Due to the poor biocompatibility, it is crucial to explore alternative options for better processing. In recent years, the setting retarder phytic acid (IP6) has been increasingly investigated. This study investigates the biological behaviour of calcium phosphate cements with varying concentrations of IP6, in addition to their physical properties. Therefore cytocompatibility in vitro testing was performed using osteoblastic (MG-63) and osteoclastic (RAW 264.7 differentiated with RANKL) cells. We could demonstrate that the physical properties like the compressive strength of specimens formed with IP6 (brushite_IP6_5 = 11.2 MPa) were improved compared to the reference (brushite = 9.8 MPa). In osteoblast and osteoclast assays, IP6 exhibited significantly better cytocompatibility in terms of cell activity and cell number for brushite cements up to 11 times compared to the brushite reference. In contrast, the calcium-deficient hydroxyapatite (CDHA) cements produced similar results for IP6 (CDHA_IP6_0.25 = 27.0 MPa) when compared to their reference (CDHA = 21.2 MPa). Interestingly, lower doses of IP6 were found to be more effective than higher doses with up to 3 times higher. Additionally, IP6 significantly increased degradation in both passive and active resorption. For these reasons, IP6 is emerging as a strong new competitor to established setting retarders such as citric acid. These cements have potential applications in bone augmentation, the stabilisation of non-load bearing fractures (craniofacial), or the cementation of metal implants.


Assuntos
Cimentos Ósseos , Fosfatos de Cálcio , Teste de Materiais , Osteoblastos , Osteoclastos , Ácido Fítico , Ácido Fítico/química , Animais , Fosfatos de Cálcio/química , Camundongos , Cimentos Ósseos/química , Osteoblastos/efeitos dos fármacos , Osteoblastos/citologia , Células RAW 264.7 , Humanos , Osteoclastos/efeitos dos fármacos , Força Compressiva , Materiais Biocompatíveis/química , Durapatita/química
2.
J Biomater Appl ; 38(3): 438-454, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37525613

RESUMO

Magnesium phosphate-based bone cements, particularly struvite (MgNH4PO4∙6H2O)-forming cements, have attracted increased scientific interest in recent years because they exhibit similar biocompatibility to hydroxyapatite while degrading much more rapidly in vivo. However, other magnesium-based minerals which might be promising are, to date, little studied. Therefore, in this study, we investigated three magnesium-based bone cements: a magnesium oxychloride cement (Mg3(OH)5Cl∙4H2O), an amorphous magnesium phosphate cement based on Mg3(PO4)2, MgO, and NaH2PO4, and a newberyite cement (MgHPO4·3H2O). Because it is not sufficiently clear from the literature to what extent these cements are suitable for clinical use, all of them were characterized and optimized regarding setting time, setting temperature, compressive strength and passive degradation in phosphate-buffered saline. Because the in vitro properties of the newberyite cement were most promising, it was orthotopically implanted into a partially weight-bearing tibial bone defect in sheep. The cement exhibited excellent biocompatibility and degraded more rapidly compared to a hydroxyapatite reference cement; after 4 months, 18% of the cement was degraded. We conclude that the newberyite cement was the most promising candidate of the investigated cements and has clear advantages over calcium phosphate cements, especially in terms of setting time and degradation behavior.


Assuntos
Cimentos Ósseos , Magnésio , Animais , Ovinos , Teste de Materiais , Fosfatos de Cálcio , Força Compressiva , Durapatita
3.
Acta Biomater ; 145: 358-371, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35443213

RESUMO

Results of several studies during past years suggested that magnesium phosphate cements (MPCs) not only show excellent biocompatibility and osteoconductivity, but they also provide improved regeneration capacity due to higher solubility compared to calcium phosphates. These findings also highlighted that chemical similarity of bone substitutes to the natural bone tissue is not a determinant factor in the success of regenerative strategies. The aim of this study was to further improve the degradation speed of MPCs for a fast bone ingrowth within a few months. We confirmed our hypothesis, that decreasing the powder-liquid ratio (PLR) of cement results in an increased content of highly soluble phases such as struvite (MgNH4PO4⋅6H2O) as well as K-struvite (MgKPO4⋅6H2O). Promising compositions with a low PLR of 1 g ml-1 were implanted in partially-loaded tibia defects in sheep. Both cements were partially degraded and replaced by bone tissue after 4 months. The degradation speed of the K-struvite cement was significantly higher compared to the struvite cement, initially resulting in the formation of a cell-rich resorption zone at the surface of some implants, as determined by histology. Overall, both MPCs investigated in this study seem to be promising as an alternative to the clinically well-established, but slowly degrading calcium phosphate cements, depending on defect size and desired degradation rate. Whereas the K-struvite cement might require further modification towards a slower resorption and reduced inflammatory response in vivo, the struvite cement appears promising for the treatment of bone defects due to its continuous degradation with simultaneous new bone formation. STATEMENT OF SIGNIFICANCE: Cold setting bone cements are used for the treatment of bone defects that exceed a critical size and cannot heal on their own. They are applied pasty into the bone defect and harden afterwards so that the shape adapts to the individual defect. Magnesium phosphates such as magnesium ammonium phosphate hexahydrate (struvite) belong to a new class of these cold setting bone cements. They degrade much faster than the clinically established calcium phosphates. In this study, a magnesium phosphate that has hardly been investigated so far was implanted into partially-loaded defects in sheeps: Potassium magnesium phosphate hexahydrate. This showed even faster resorption compared to the struvite cement: after 4 months, 63% of the cement was already degraded.


Assuntos
Cimentos Ósseos , Substitutos Ósseos , Animais , Cimentos Ósseos/química , Cimentos Ósseos/farmacologia , Regeneração Óssea , Fosfatos de Cálcio/química , Fosfatos de Cálcio/farmacologia , Compostos de Magnésio , Teste de Materiais , Fosfatos/química , Fosfatos/farmacologia , Pós , Ovinos , Estruvita
4.
Small ; 18(3): e2104193, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34741411

RESUMO

Melt electrowriting (MEW) is a high-resolution additive manufacturing technology that places unique constraints on the processing of thermally degradable polymers. With a single nozzle, MEW operates at low throughput and in this study, medical-grade poly(ε-caprolactone) (PCL) is heated for 25 d at three different temperatures (75, 85, and 95 °C), collecting daily samples. There is an initial increase in the fiber diameter and decrease in the jet speed over the first 5 d, then the MEW process remains stable for the 75 and 85 °C groups. When the collector speed is fixed to a value at least 10% above the jet speed, the diameter remains constant for 25 d at 75 °C and only increases with time for 85 and 95 °C. Fiber fusion at increased layer height is observed for 85 and 95 °C, while the surface morphology of single fibers remain similar for all temperatures. The properties of the prints are assessed with no observable changes in the degree of crystallinity or the Young's modulus, while the yield strength decreases in later phases only for 95 °C. After the initial 5-d period, the MEW processing of PCL at 75 °C is extraordinarily stable with overall fiber diameters averaging 13.5 ± 1.0 µm over the entire 25-d period.


Assuntos
Engenharia Tecidual , Alicerces Teciduais , Poliésteres , Polímeros
5.
3D Print Addit Manuf ; 8(5): 315-321, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36654937

RESUMO

Melt electrowriting (MEW) is an aspiring 3D printing technology with an unprecedented resolution among fiber-based printing technologies. It offers the ability to direct-write predefined designs utilizing a jet of molten polymer to fabricate constructs composed of fibers with diameters of only a few micrometers. These dimensions enable unique construct properties. Poly(ɛ-caprolactone) (PCL), a semicrystalline polymer mainly used for biomedical and life science applications, is the most prominent material for MEW and exhibits excellent printing properties. Despite the wealth of melt electrowritten constructs that have been fabricated by MEW, a detailed investigation, especially regarding fiber analysis on a macro- and microlevel is still lacking. Hence, this study systematically examines the influence of process parameters such as spinneret diameter, feeding pressure, and collector velocity on the diameter and particularly the topography of PCL fibers and sheds light on how these parameters affect the mechanical properties and crystallinity. A correlation between the mechanical properties, crystallite size, and roughness of the deposited fiber, depending on the collector velocity and applied feeding pressure, is revealed. These findings are used to print constructs composed of fibers with different microtopography without affecting the fiber diameter and thus the macroscopic assembly of the printed constructs.

6.
Materials (Basel) ; 12(13)2019 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-31261865

RESUMO

A calcium deficient hydroxyapatite (CDHA) forming cement with a bimodal grain size distribution, composed of α-TCP and fine grained CDHA at a weight ratio of 9:1, was modified by the addition of sodium phytate (IP6) in variable amounts ranging from 0.25 to 2 wt.%, related to the powder content. The injectability of the cement paste was drastically increased by the IP6 addition, independent of the amount of added IP6. Additionally, the cement paste viscosity during the first minutes decreased. These effects could be clearly related to a slightly more negative zeta potential. Furthermore, IP6 was shown to strongly retard the setting reaction, as can be seen both in the calorimetry and X-ray diffraction measurements. In addition, octacalcium phosphate (OCP) was identified as a further setting product. All measurements were performed at 23 °C and 37 °C to assess the effect of temperature on the setting reaction for both clinical handling by the surgeon and the final hardening in the bone defect.

7.
Acta Biomater ; 80: 378-389, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30195085

RESUMO

Calcium phosphate cements composed of ß-tricalcium phosphate (ß-TCP) and phosphoric acid were modified by addition of 5, 10, 12.5, 15 and 20 wt% phytic acid (IP6) related to the ß-TCP content and compared to a reference containing 0.5 M citric acid monohydrate solution as setting regulator. The hydration reaction of these cements was investigated by isothermal calorimetry and in-situ X-ray diffraction at 23 °C and 37 °C. The cements were further characterized with respect to their injectability, rheology, zeta potential and time-resolved compressive strength development. Injectability was strongly improved by IP6 addition, while the maximum effect was already reached by the addition of 5 wt% IP6. This could be clearly related to an increase of the negative zeta potential leading to a mutual repulsion of cement particles. A further increase of the IP6 content had a detrimental effect on initial paste viscosity and shifted the gelation point to earlier time points. IP6 was further proven to act as a retarder for the cement setting reaction, whereas the effect was stronger for higher IP6 concentrations. Additionally, IP6 favoured the formation of monetite instead of brushite and a better mechanical performance compared to the IP6 free reference cement. STATEMENT OF SIGNIFICANCE: Calcium phosphate cements (CPCs) are clinically applied for bone repair due to their excellent biocompatibility and bone regeneration capacity. A deep understanding of the setting mechanism is the prerequisite for the targeted fabrication and application of such bone cements, whereas setting characteristics are usually adjusted by additives. Here, novel injectable CPC formulations were developed by modifying a cement composed of ß-tricalcium phosphate and phosphoric acid with phytic acid (IP6). A detailed investigation of the setting mechanism of the IP6 modified CPCs is provided, which demonstrated the effectiveness of IP6 as setting regulator to adjust the reaction time and kind of setting product. Additionally, the high surface charge of cement particles after IP6 addition was effective in dispersing cement particles leading to low viscous cement pastes, which can be directly applied through a syringe for minimal invasive surgery.


Assuntos
Cimentos Ósseos/química , Fosfatos de Cálcio/química , Ácido Fítico/química , Água/química , Calorimetria , Força Compressiva , Concentração de Íons de Hidrogênio , Injeções , Pós , Espectroscopia de Prótons por Ressonância Magnética , Eletricidade Estática , Viscosidade , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...