Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 13(13): 8683-8691, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36936829

RESUMO

Perovskite materials play a significant role in oxygen sensors due to their fascinating electrical and ionic conductivities. The sol-gel technique was employed to prepare various compositions of B-site-deficient Fe-doped SrTiO3 (iron-doped strontium titanate) or Sr(Ti0.6Fe0.4)1-x O3-δ , where x = 0.01, 0.02, and 0.03. The XRD results revealed that the principle crystalline phase of the samples was the cubic perovskite structure. The B-site deficiency improved the ionic and total conductivities of Sr(Ti0.6Fe0.4)1-x O3-δ . A small polaron conduction behavior occurred in the total electrical conductivity. The XPS results showed that the oxygen vacancy value decreased with the rise in the amount of B-site deficiencies. A lower B-site deficiency amount could produce more oxygen vacancies in the lattice but resulted in the ordering of vacancies and then lower ionic conductivity. The aging behavior was caused by the ordering of oxygen vacancies and resulted in a degeneration of electrical features under a long service time. Conversely, augmentation of the B-site deficiency amount inhibited the tendency for the ordering of oxygen vacancies and then promoted the electrical performance under a long usage time. The conduction mechanism of oxygen ions through oxygen vacancies was thoroughly investigated and discussed. The current study presents a feasible approach to ameliorate the physical features of conductors through doping the B-site of the perovskite layer with Fe, which would be a fruitful approach for numerous applications, including oxygen sensors and fuel cells anodes.

2.
Sci Rep ; 8(1): 12935, 2018 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-30154545

RESUMO

Metal-Nb2O5-x-metal memdiodes exhibiting rectification, hysteresis, and capacitance are demonstrated for applications in neuromorphic circuitry. These devices do not require any post-fabrication treatments such as filament creation by electroforming that would impede circuit scalability. Instead these devices operate due to Poole-Frenkel defect controlled transport where the high defect density is inherent to the Nb2O5-x deposition rather than post-fabrication treatments. Temperature dependent measurements reveal that the dominant trap energy is 0.22 eV suggesting it results from the oxygen deficiencies in the amorphous Nb2O5-x. Rectification occurs due to a transition from thermionic emission to tunneling current and is present even in thick devices (>100 nm) due to charge trapping which controls the tunneling distance. The turn-on voltage is linearly proportional to the Schottky barrier height and, in contrast to traditional metal-insulator-metal diodes, is logarithmically proportional to the device thickness. Hysteresis in the I-V curve occurs due to the current limited filling of traps.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...