Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202404292, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38860426

RESUMO

Metal phosphides have been hailed as potential replacements for scarce noble metal catalysts in many aspects of the hydrogen economy from hydrogen evolution to selective hydrogenation reactions. But the need for dangerous and costly phosphorus precursors, limited support dispersion, and low stability of the metal phosphide surface toward oxidation substantially lower the appeal and performance of metal phosphides in catalysis. We show here that a 1-step procedure that relies on safe and cheap precursors can furnish an air-stable Ni2P/Al2O3 catalyst containing 3.2 nm nanoparticles. Ni2P/Al2O3 1-step is kinetically competitive with the palladium-based Lindlar catalyst in selective hydrogenation catalysis, and a loading corresponding to 4 ppm Ni was sufficient to convert 0.1 mol alkyne. The 1-step synthetic procedure alters the surface ligand speciation of Ni2P/Al2O3, which protects the nanoparticle surface from oxidation, and ensures that 85 % of the initial catalytic activity was retained after the catalyst was stored under air for 1.5 years. Preparation of Ni2P on a variety of supports (silica, TiO2, SBA-15, ZrO2, C and HAP) as well as Co2P/Al2O3, Co2P/TiO2 and bimetallic NiCoP/TiO2 demonstrates the generality with which supported metal phosphides can be accessed in a safe and straightforward fashion with small sizes and high dispersion.

2.
ACS Appl Mater Interfaces ; 16(19): 25136-25147, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38687307

RESUMO

Niobium oxide (Nb2O5) is a versatile semiconductor material with photochromic properties. This study investigates the local structure of noncrystalline, short-range-ordered niobium oxide synthesized via a sol-gel method. X-ray atomic pair distribution function analysis unravels the structural arrangements within the noncrystalline materials at a local scale. In the following, in situ scattering and diffraction experiments elucidate the heat-induced structure transformation of the amorphous material into crystalline TT-Nb2O5 at 550 °C. In addition, the effect of photocatalytic conditions on the structure of the material was investigated by exposing the short-range-ordered and crystalline materials to ultraviolet light, resulting in a reversible color change from white to dark brown or blue. This photochromic response is due to the reversible elongation of the nearest Nb-O neighbors, as shown by local structure analysis based on in situ PDF analyses. Optical band gap calculations based on the ultraviolet-visible spectra collected for both the short-range-ordered and crystalline materials show that the band gap values reduced for the darkened materials return to their initial state after bleaching. Furthermore, electron energy loss spectroscopy reveals the reduction of Nb5+ to Nb4+ centers as a persistent effect. The study establishes a correlation between the band gap and the structure of niobium oxide, providing insights into the structure-performance relation at the atomic level.

3.
ACS Appl Mater Interfaces ; 16(17): 21997-22006, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38647135

RESUMO

Perovskites have attracted tremendous attention as potential catalysts for the oxygen evolution reaction (OER). It is well-known that the introduction of Fe into rare earth perovskites such as LaNiO3 enhances the intrinsic OER activity. Despite numerous studies on structure-property relationships, the origin of the activity and the nature of the active species are still elusive and unclear. In this work, we study a series of LaNixFe1-xO3 perovskites using in situ electrochemical surface-enhanced Raman spectroscopy and electron energy loss spectroscopy to decipher the surface evolution and formation of active species during OER. While the origin of the activity arises from NiOOH species formed from the active Ni centers in LaNiO3, our work shows that Fe serves as the active center in LaNi0.5Fe0.5O3 and forms Fe-O-Ni and FeOOH species during OER. The OER activity of LaFeO3 originates from FeOOH species, which interact with the soluble Ni species in the electrolyte forming an active electrode-electrolyte interface with high-valent stable surface iron species (Fe4+) and thereby improving the performance. Our work provides deeper insights into the synergistic effects of Ni and Fe on the catalytic activity, which in turn provides new design principles for perovskite catalysts for the OER.

4.
ACS Catal ; 14(5): 2828-2841, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38449535

RESUMO

Ammonia is currently being studied intensively as a hydrogen carrier in the context of the energy transition. The endothermic decomposition reaction requires the use of suitable catalysts. In this study, transition metal Ni on MgO as a support is investigated with respect to its catalytic properties. The synthesis method and the type of activation process contribute significantly to the catalytic properties. Both methods, coprecipitation (CP) and wet impregnation (WI), lead to the formation of Mg1-xNixO solid solutions as catalyst precursors. X-ray absorption studies reveal that CP leads to a more homogeneous distribution of Ni2+ cations in the solid solution, which is advantageous for a homogeneous distribution of active Ni catalysts on the MgO support. Activation in hydrogen at 900 °C reduces nickel, which migrates to the support surface and forms metal nanoparticles between 6 nm (CP) and 9 nm (WI), as shown by ex situ STEM. Due to the homogeneously distributed Ni2+ cations in the solid solution structure, CP samples are more difficult to activate and require harsher conditions to reduce the Ni. The combination of in situ X-ray diffraction (XRD) and operando total scattering experiments allows a structure-property investigation of the bulk down to the atomic level during the catalytic reaction. Activation in H2 at 900 °C for 2 h leads to the formation of large Ni particles (20-30 nm) for the samples synthesized by the WI method, whereas Ni stays significantly smaller for the CP samples (10-20 nm). Sintering has a negative influence on the catalytic conversion of the WI samples, which is significantly lower compared to the conversion observed for the CP samples. Interestingly, metallic Ni redisperses during cooling and becomes invisible for conventional XRD but can still be detected by total scattering methods. The conditions of activation in NH3 at 650 °C are not suitable to form enough reduced Ni nanoparticles from the solid solution and are, therefore, not a suitable activation procedure. The activity steadily increases in the samples activated at 650 °C in NH3 (Group 1) compared to the samples activated at 650 °C in H2 and then reaches the best activity in the samples activated at 900 °C in H2. Only the combination of complementary in situ and ex situ characterization methods provides enough information to identify important structure-property relationships among these promising ammonia decomposition catalysts.

5.
Angew Chem Int Ed Engl ; 63(14): e202317038, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38372407

RESUMO

Ammonia synthesis holds significant importance for both agricultural fertilizer production and emerging green energy applications. Here, we present a comprehensive characterization of a catalyst for mechanochemical ammonia synthesis, based on Cs-promoted Fe. The study sheds light on the catalyst's dynamic evolution under reaction conditions and the origin of deactivation. Initially, elemental Cs converts to CsH, followed by partial CsOH formation due to trace oxygen impurities on the surface of the Fe metal and the equipment. Concurrently, the mechanical milling process comminutes Fe, exposing fresh metallic Fe surfaces. This comminution correlates with an induction period observed during ammonia formation. Critical to the study, degradation of active Cs promoter species (CsH and CsNH2) into inactive CsOH emerged as the primary deactivation mechanism. By increasing the Cs content from 2.2 mol % to 4.2 mol %, we achieved stable, continuous ammonia synthesis for nearly 90 hours, showcasing one of the longest-running mechanocatalytic gas phase reactions. Studies of the temperature dependence of the reaction revealed negligible bulk temperature influence in the range of -10 °C to 100 °C, highlighting the dominance of mechanical action over bulk thermal effects. This study offers insights into the complex interplay between mechanical processing, reactive species, and deactivation mechanisms in mechanocatalytic ammonia synthesis.

6.
ACS Omega ; 8(48): 45599-45605, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38075800

RESUMO

Carbon xerogels (CXs) provide unique opportunities for numerous applications in the areas of adsorption, separation, insulation, catalysis, and electrochemistry, but their use is hampered by time- and energy-intensive synthesis protocols. Synthesis protocols may require several days or more. Here, we report the synthesis of CXs requiring only 5 h using hydrothermal gelation and direct carbonization of the wet polymer. Drying of the polymer gel is of utmost importance for the synthesis of closely related carbon aerogels and is generally considered to be essential for the preparation of CXs. We show that skipping this step has no detrimental effect on the properties of CXs. They are identical to those obtained via conventional routes. With this "superfast" synthesis route, CXs with specific surface areas of about 700 m2 g-1 and total pore volumes up to 1.5 cm3 g-1 are obtained very time-efficiently and without loss of performance.

7.
Inorg Chem ; 62(42): 17470-17485, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37820300

RESUMO

Alloyed ultrasmall silver-platinum nanoparticles (molar ratio Ag:Pt = 50:50) were prepared and compared to pure silver, platinum, and gold nanoparticles, all with a metallic core diameter of 2 nm. They were surface-stabilized by a layer of glutathione (GSH). A comprehensive characterization by high-resolution transmission electron microscopy (HRTEM), electron diffraction (ED), X-ray diffraction (XRD), small-angle X-ray scattering (SAXS), differential centrifugal sedimentation (DCS), and UV spectroscopy showed their size both in the dry and in the water-dispersed state (hydrodynamic diameter). Solution NMR spectroscopy (1H, 13C, COSY, HSQC, HMBC, and DOSY) showed the nature of the glutathione shell including the number of GSH ligands on each nanoparticle (about 200 with a molecular footprint of 0.063 nm2 each). It furthermore showed that there are at least two different positions for the GSH ligand on the gold nanoparticle surface. Platinum strongly reduced the resolution of the NMR spectra compared to silver and gold, also in the alloyed nanoparticles. X-ray photoelectron spectroscopy (XPS) showed that silver, platinum, and silver-platinum particles were at least partially oxidized to Ag(+I) and Pt(+II), whereas the gold nanoparticles showed no sign of oxidation. Platinum and gold nanoparticles were well crystalline but twinned (fcc lattice) despite the small particle size. Silver was crystalline in electron diffraction but not in X-ray diffraction. Alloyed silver-platinum nanoparticles were almost fully amorphous by both methods, indicating a considerable internal disorder.

8.
Angew Chem Int Ed Engl ; 61(40): e202208016, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-35972468

RESUMO

Ball milling is growing increasingly important as an alternative synthetic tool to prepare catalytic materials. It was recently observed that supported metal catalysts could be directly obtained upon ball milling from the coarse powders of metal and oxide support. Moreover, when two compatible metal sources are simultaneously subjected to the mechanochemical treatment, bimetallic nanoparticles are obtained. A systematic investigation was extended to different metals and supports to understand better the mechanisms involved in the comminution and alloying of metal nanoparticles. Based on this, a model describing the role of metal-support interactions in the synthesis was developed. The findings will be helpful for the future rational design of supported metal catalysts via dry ball milling.

9.
Angew Chem Int Ed Engl ; 61(42): e202211543, 2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36001016

RESUMO

Herein, we show that coupling boron with cobalt oxide tunes its structure and significantly boost its electrocatalytic performance for the oxygen evolution reaction (OER). Through a simple precipitation and thermal treatment process, a series of Co-B oxides with tunable morphologies and textural parameters were prepared. Detailed structural analysis supported first the formation of an disordered and partially amorphous material with nanosized Co3 BO5 and/or Co2 B2 O6 being present on the local atomic scale. The boron modulation resulted in a superior OER reactivity by delivering a large current and an overpotential of 338 mV to reach a current density of 10 mA cm-2 in 1 M KOH electrolyte. Identical location transmission electron microscopy and in situ electrochemical Raman spectroscopy studies revealed alteration and surface re-construction of materials, and formation of CoO2 and (oxy)hydroxide intermediate, which were found to be highly dependent on crystallinity of the samples.

10.
J Am Chem Soc ; 144(21): 9421-9433, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35604643

RESUMO

Aluminum oxides, oxyhydroxides, and hydroxides are important in different fields of application due to their many attractive properties. However, among these materials, tohdite (5Al2O3·H2O) is probably the least known because of the harsh conditions required for its synthesis. Herein, we report a straightforward methodology to synthesize tohdite nanopowders (particle diameter ∼13 nm, specific surface area ∼102 m2 g-1) via the mechanochemically induced dehydration of boehmite (γ-AlOOH). High tohdite content (about 80%) is achieved upon mild ball milling (400 rpm for 48 h in a planetary ball mill) without process control agents. The addition of AlF3 can promote the crystallization of tohdite by preventing the formation of the most stable α-Al2O3, resulting in the formation of almost phase-pure tohdite. The availability of easily accessible tohdite samples allowed comprehensive characterization by powder X-ray diffraction, total scattering analysis, solid-state NMR (1H and 27Al), N2-sorption, electron microscopy, and simultaneous thermal analysis (TG-DSC). Thermal stability evaluation of the samples combined with structural characterization evidenced a low-temperature transformation sequence: 5Al2O3·H2O → κ-Al2O3 → α-Al2O3. Surface characterization via DRIFTS, ATR-FTIR, D/H exchange experiments, pyridine-FTIR, and NH3-TPD provided further insights into the material properties.

11.
Inorg Chem ; 61(12): 5133-5147, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35285631

RESUMO

Ultrasmall nanoparticles of platinum group metal oxides (core diameter of about 1.8 nm) were prepared by alkaline hydrolysis of metal precursors in the presence of NaBH4 and by colloidal stabilization with tripeptide glutathione. We obtained water-dispersed nanoparticles of Rh2O3, PdO, RuO2, IrO2, Os/OsO2, and Pt/PtO. Their size was probed using high-resolution transmission electron microscopy, differential centrifugal sedimentation, small-angle X-ray scattering, and diffusion-ordered 1H NMR spectroscopy (1H DOSY). Their oxidation state was clearly determined using X-ray photoelectron spectroscopy, X-ray powder diffraction, and electron diffraction. The chemical composition of the nanoparticles, that is, the ratio of the metal oxide core and glutathione capping agent, was quantitatively determined by a combination of these methods.


Assuntos
Nanopartículas Metálicas , Óxidos , Nanopartículas Metálicas/química , Óxidos/química , Platina/química , Água/química , Difração de Raios X
12.
Inorg Chem ; 61(5): 2379-2390, 2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-34807595

RESUMO

Transition-metal phosphates show a wide range of chemical compositions, variations of the valence states, and crystal structures. They are commercially used as solid-state catalysts, cathode materials in rechargeable batteries, or potential candidates for proton-exchange membranes in fuel cells. Here, we report on the successful ab initio structure determination of two novel titanium pyrophosphates, Ti(III)p and Ti(IV)p, from powder X-ray diffraction (PXRD) data. The low-symmetry space groups P21/c for Ti(III)p and P1̅ for Ti(IV)p required the combination of spectroscopic and diffraction techniques for structure determination. In Ti(III)p, trivalent titanium ions occupy the center of TiO6 polyhedra, coordinated by five pyrophosphate groups, one of them as a bidentate ligand. This secondary coordination causes the formation of one-dimensional six-membered ring channels with a diameter dmax of 3.93(2) Å, which is stabilized by NH4+ ions. Annealing Ti(III)p in inert atmospheres results in the formation of a new compound, denoted as Ti(IV)p. The structure of this compound shows a similar three-dimensional framework consisting of [PO4]3- tetrahedra and TiIV+O6 octahedra and an empty one-dimensional channel with a diameter dmax of 5.07(1) Å. The in situ PXRD of the transformation of Ti(III)p to Ti(IV)p reveals a two-step mechanism, i.e., the decomposition of NH4+ ions in a first step and subsequent structure relaxation. The specific proton conductivity and activation energy of the proton migration of Ti(III)p, governed by the Grotthus mechanism, belong to the highest and lowest, respectively, ever reported for this class of materials, which reveals its potential application in electrochemical devices like fuel cells and water electrolyzers in the intermediate temperature range.

13.
ChemSusChem ; 15(5): e202102404, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-34905292

RESUMO

Ordered mesoporous CuNiCo oxides were prepared via nanocasting with varied Cu/Ni ratio to establish its impact on the electrochemical performance of the catalysts. Physicochemical properties were determined along with the electrocatalytic activities toward oxygen evolution/reduction reactions (OER/ORR). Combining Cu, Ni, and Co allowed creating active and stable bifunctional electrocatalysts. CuNiCo oxide (Cu/Ni≈1 : 4) exhibited the highest current density of 411 mA cm-2 at 1.7 V vs. reversible hydrogen electrode (RHE) and required the lowest overpotential of 312 mV to reach 10 mA cm-2 in 1 m KOH after 200 cyclic voltammograms. OER measurements were also conducted in the purified 1 m KOH, where CuNiCo oxide (Cu/Ni≈1 : 4) also outperformed NiCo oxide and showed excellent chemical and catalytic stability. For ORR, Cu/Ni incorporation provided higher current density, better kinetics, and facilitated the 4e- pathway of the oxygen reduction reaction. The tests in Li-O2 cells highlighted that CuNiCo oxide can effectively promote ORR and OER at a lower overpotential.

14.
Rev Sci Instrum ; 92(11): 114102, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34852549

RESUMO

In situ monitoring of mechanochemical reactions of soft matter is feasible by synchrotron diffraction experiments. However, so far, reactions of hard materials in existing polymer milling vessels failed due to insufficient energy input. In this study, we present the development of a suitable setup for in situ diffraction experiments at a synchrotron facility. The mechanochemical transformation of boehmite, γ-AlOOH, to corundum, α-Al2O3, was chosen as a model system. The modifications of the mill's clamping system and the vessels themselves were investigated separately. Starting from a commercially available Retsch MM 400 shaker mill, the influence of the geometrical adaptation of the setup on the milling process was investigated. Simply extending the specimen holder proved to be not sufficient because changes in mechanical forces need to be accounted for in the construction of optimized extensions. Milling vessels that are suitable for diffraction experiments and also guarantee the required energy input as well as mechanical stability were developed. The vessels consist of a steel body and modular polymer/steel rings as x-ray transparent windows. In addition, the vessels are equipped with a gas inlet and outlet system that is connectable to a gas analytics setup. Based on the respective modifications, the transformation of boehmite to corundum could be observed in an optimized setup.

15.
Chemistry ; 27(49): 12451-12452, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34263488

RESUMO

Invited for the cover of this issue is Claudia Weidenthaler and co-workers at the Max-Planck-Institut für Kohlenforschung, Shenzhen University and Deutsches Elektronen Synchrotron. The image depicts the X-ray diffraction results showing the formation of ZnS and the subsequent phase transition from the hexagonal to the cubic modification. Read the full text of the article at 10.1002/chem.202101260.

16.
ACS Appl Mater Interfaces ; 13(44): 51962-51973, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34323466

RESUMO

Herein, we report nanosecond, single-pulse laser post-processing (PLPP) in a liquid flat jet with precise control of the applied laser intensity to tune structure, defect sites, and the oxygen evolution reaction (OER) activity of mesostructured Co3O4. High-resolution X-ray diffraction (XRD), Raman, and X-ray photoelectron spectroscopy (XPS) are consistent with the formation of cobalt vacancies at tetrahedral sites and an increase in the lattice parameter of Co3O4 after the laser treatment. X-ray absorption spectroscopy (XAS) and X-ray emission spectroscopy (XES) further reveal increased disorder in the structure and a slight decrease in the average oxidation state of the cobalt oxide. Molecular dynamics simulation confirms the surface restructuring upon laser post-treatment on Co3O4. Importantly, the defect-induced PLPP was shown to lower the charge transfer resistance and boost the oxygen evolution activity of Co3O4. For the optimized sample, a 2-fold increment of current density at 1.7 V vs RHE is obtained and the overpotential at 10 mA/cm2 decreases remarkably from 405 to 357 mV compared to pristine Co3O4. Post-mortem characterization reveals that the material retains its activity, morphology, and phase structure after a prolonged stability test.

17.
Chemistry ; 27(45): 11600-11608, 2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34060158

RESUMO

Amorphous Tix Oy with high surface area has attracted significant interest as photocatalyst with higher activity in ultraviolet (UV) light-induced water splitting applications compared to commercial nanocrystalline TiO2 . Under photocatalytic operation conditions, the structure of the molecular titanium alkoxide precursor rearranges upon hydrolysis and leads to higher connectivity of the structure-building units. Structurally ordered domains with sizes smaller than 7 Šform larger aggregates. The experimental scattering data can be explained best with a structure model consisting of an anatase-like core and a distorted shell. Upon exposure to UV light, the white Tix Oy suspension turns dark corresponding to the reduction of Ti4+ to Ti3+ as confirmed by electron energy loss spectroscopy (EELS). Heat-induced crystallisation was followed by in situ temperature-dependent total scattering experiments. First, ordering in the Ti-O environment takes place upon to 350 °C. Above this temperature, the distorted anatase core starts to grow but the structure obtained at 400 °C is still not fully ordered.

18.
Chemistry ; 27(49): 12558-12565, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34062026

RESUMO

Mechanochemistry, as a synthesis tool for inorganic materials, became an ever-growing field in material chemistry. The direct energy transfer by collision of the educts with the milling media gives the possibility to design environmental-friendly reactions. Nevertheless, the underlying process of energy transfer and hence the kinetics of mechanosynthesis remain unclear. Herein, we present in situ synchrotron X-ray diffraction studies coupled with pressure measurements performed during the formation of ZnS and the subsequent phase transition (PT) from the hexagonal to the cubic modification. Milling Zn and S8 results in the sublimation of S8 , observed by a sudden pressure increase. Simultaneously, the hexagonal metastable ZnS-modification (wurtzite) forms. Via detection of the pressure maximum, the exact start of the wurtzite formation can be determined. Immediately after the formation of wurtzite, the structural PT to the thermodynamic stable cubic modification sphalerite takes place. This PT can be described by the Prout-Tompkins equation for autocatalytic reactions, similar to thermally induced PT in sulfur vapor at high temperatures (T>1133 K). The increase in the reactivity of the wurtzite formation is explained by the reaction in sulfur vapor and the induction of defect structures by the collisions with the milling media.

19.
J Phys Chem B ; 125(21): 5645-5659, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-34029093

RESUMO

Ultrasmall silver nanoparticles were prepared by reduction with NaBH4 and surface-terminated with glutathione (GSH). The particles had a solid core diameter of 2 nm as shown by transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS). NMR-DOSY gave a hydrodynamic diameter of 2 to 2.8 nm. X-ray photoelectron spectroscopy (XPS) showed that silver is bound to the thiol group of the central cysteine in glutathione under partial oxidation to silver(+I). In turn, the thiol group is deprotonated to thiolate. X-ray powder diffraction (XRD) together with Rietveld refinement confirmed a twinned (polycrystalline) fcc structure of ultrasmall silver nanoparticles with a lattice compression of about 0.9% compared to bulk silver metal. By NMR spectroscopy, the interaction between the glutathione ligand and the silver surface was analyzed, also with 13C-labeled glutathione. The adsorbed glutathione is fully intact and binds to the silver surface via cysteine. In situ 1H NMR spectroscopy up to 85 °C in dispersion showed that the glutathione ligand did not detach from the surface of the silver nanoparticle, i.e. the silver-sulfur bond is remarkably strong. The ultrasmall nanoparticles had a higher cytotoxicity than bigger particles in in vitro cell culture with HeLa cells with a cytotoxic concentration of about 1 µg mL-1 after 24 h incubation. The overall stoichiometry of the nanoparticles was about Ag∼250GSH∼155.


Assuntos
Nanopartículas Metálicas , Prata , Células HeLa , Humanos , Ligantes , Nanopartículas Metálicas/toxicidade , Tamanho da Partícula , Espalhamento a Baixo Ângulo , Difração de Raios X
20.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 77(Pt 2): 299-306, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33843738

RESUMO

Dehydrocoupling of the adduct of dimethylamine and borane, NH(CH3)2-BH3 leads to dimethylaminoborane with formal composition N(CH3)2-BH2. The structure of this product depends on the conditions of the synthesis; it may crystallize either as a dimer in a triclinic space group forming a four-membered ring [N(CH3)2-BH2]2 or as a trimer forming a six-membered ring [N(CH3)2-BH2]3 in an orthorhombic space group. Due to the denser packing, the six-membered ring in the trimer structure should be energetically more stable than the four-membered ring. The triclinic structure is stable at low temperatures. Heating the triclinic phase above 290 K leads to a second-order phase transition to a new monoclinic polymorph. While the crystal structures of the triclinic and orthorhombic phases were already known in the literature, the monoclinic crystal structure was determined from powder diffraction data in this study. Monoclinic dimethylaminoborane crystallizes in space group C2/m with the boron and nitrogen atoms located on the mirror plane, Wyckoff position 4i, while the carbon and hydrogen atoms are on the general position 8j.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...