Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 8(1): 7956, 2018 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-29785054

RESUMO

This work is concerned with Al/Al-oxide(AlOx)/Al-layer systems which are important for Josephson-junction-based superconducting devices such as quantum bits. The device performance is limited by noise, which has been to a large degree assigned to the presence and properties of two-level tunneling systems in the amorphous AlOx tunnel barrier. The study is focused on the correlation of the fabrication conditions, nanostructural and nanochemical properties and the occurrence of two-level tunneling systems with particular emphasis on the AlOx-layer. Electron-beam evaporation with two different processes and sputter deposition were used for structure fabrication, and the effect of illumination by ultraviolet light during Al-oxide formation is elucidated. Characterization was performed by analytical transmission electron microscopy and low-temperature dielectric measurements. We show that the fabrication conditions have a strong impact on the nanostructural and nanochemical properties of the layer systems and the properties of two-level tunneling systems. Based on the understanding of the observed structural characteristics, routes are suggested towards the fabrication of Al/AlOx/Al-layers systems with improved properties.

2.
Phys Rev E ; 94(4-1): 042202, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27841459

RESUMO

We demonstrate experimentally the operation of a deterministic Josephson ratchet with tunable asymmetry. The ratchet is based on a φ Josephson junction with a ferromagnetic barrier operating in the underdamped regime. The system is probed also under the action of an additional dc current, which acts as a counterforce trying to stop the ratchet. Under these conditions the ratchet works against the counterforce, thus producing a nonzero output power. Finally, we estimate the efficiency of the φ Josephson junction ratchet.

3.
Rev Sci Instrum ; 86(2): 024706, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25725869

RESUMO

Superconducting microwave resonators are reliable circuits widely used for detection and as test devices for material research. A reliable determination of their external and internal quality factors is crucial for many modern applications, which either require fast measurements or operate in the single photon regime with small signal to noise ratios. Here, we use the circle fit technique with diameter correction and provide a step by step guide for implementing an algorithm for robust fitting and calibration of complex resonator scattering data in the presence of noise. The speedup and robustness of the analysis are achieved by employing an algebraic rather than an iterative fit technique for the resonance circle.

4.
Phys Rev Lett ; 109(10): 107002, 2012 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-23005318

RESUMO

We demonstrate experimentally the existence of Josephson junctions having a doubly degenerate ground state with an average Josephson phase ψ=±φ. The value of φ can be chosen by design in the interval 0<φ<π. The junctions used in our experiments are fabricated as 0-π Josephson junctions of moderate normalized length with asymmetric 0 and π regions. We show that (a) these φ Josephson junctions have two critical currents, corresponding to the escape of the phase ψ from -φ and +φ states, (b) the phase ψ can be set to a particular state by tuning an external magnetic field, or (c) by using a proper bias current sweep sequence. The experimental observations are in agreement with previous theoretical predictions.

5.
Science ; 334(6052): 61-5, 2011 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-21885732

RESUMO

The von Neumann architecture for a classical computer comprises a central processing unit and a memory holding instructions and data. We demonstrate a quantum central processing unit that exchanges data with a quantum random-access memory integrated on a chip, with instructions stored on a classical computer. We test our quantum machine by executing codes that involve seven quantum elements: Two superconducting qubits coupled through a quantum bus, two quantum memories, and two zeroing registers. Two vital algorithms for quantum computing are demonstrated, the quantum Fourier transform, with 66% process fidelity, and the three-qubit Toffoli-class OR phase gate, with 98% phase fidelity. Our results, in combination especially with longer qubit coherence, illustrate a potentially viable approach to factoring numbers and implementing simple quantum error correction codes.

6.
Phys Rev Lett ; 106(6): 060401, 2011 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-21405445

RESUMO

Quantum entanglement, one of the defining features of quantum mechanics, has been demonstrated in a variety of nonlinear spinlike systems. Quantum entanglement in linear systems has proven significantly more challenging, as the intrinsic energy level degeneracy associated with linearity makes quantum control more difficult. Here we demonstrate the quantum entanglement of photon states in two independent linear microwave resonators, creating N-photon NOON states (entangled states |N0> + |0N>) as a benchmark demonstration. We use a superconducting quantum circuit that includes Josephson qubits to control and measure the two resonators, and we completely characterize the entangled states with bipartite Wigner tomography. These results demonstrate a significant advance in the quantum control of linear resonators in superconducting circuits.

7.
Phys Rev Lett ; 106(6): 060501, 2011 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-21405448

RESUMO

A major challenge in the field of quantum computing is the construction of scalable qubit coupling architectures. Here, we demonstrate a novel tunable coupling circuit that allows superconducting qubits to be coupled over long distances. We show that the interqubit coupling strength can be arbitrarily tuned over nanosecond time scales within a sequence that mimics actual use in an algorithm. The coupler has a measured on/off ratio of 1000. The design is self-contained and physically separate from the qubits, allowing the coupler to be used as a module to connect a variety of elements such as qubits, resonators, amplifiers, and readout circuitry over distances much larger than nearest-neighbor. Such design flexibility is likely to be useful for a scalable quantum computer.

8.
Nature ; 467(7315): 570-3, 2010 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-20882012

RESUMO

Entanglement is one of the key resources required for quantum computation, so the experimental creation and measurement of entangled states is of crucial importance for various physical implementations of quantum computers. In superconducting devices, two-qubit entangled states have been demonstrated and used to show violations of Bell's inequality and to implement simple quantum algorithms. Unlike the two-qubit case, where all maximally entangled two-qubit states are equivalent up to local changes of basis, three qubits can be entangled in two fundamentally different ways. These are typified by the states |GHZ>= (|000+ |111>)/ sqrt [2] and |W>= (|001> + |010> + |100>)/ sqrt [3]. Here we demonstrate the operation of three coupled superconducting phase qubits and use them to create and measure |GHZ> and |W>states. The states are fully characterized using quantum state tomography and are shown to satisfy entanglement witnesses, confirming that they are indeed examples of three-qubit entanglement and are not separable into mixtures of two-qubit entanglement.

9.
Nature ; 464(7289): 697-703, 2010 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-20237473

RESUMO

Quantum mechanics provides a highly accurate description of a wide variety of physical systems. However, a demonstration that quantum mechanics applies equally to macroscopic mechanical systems has been a long-standing challenge, hindered by the difficulty of cooling a mechanical mode to its quantum ground state. The temperatures required are typically far below those attainable with standard cryogenic methods, so significant effort has been devoted to developing alternative cooling techniques. Once in the ground state, quantum-limited measurements must then be demonstrated. Here, using conventional cryogenic refrigeration, we show that we can cool a mechanical mode to its quantum ground state by using a microwave-frequency mechanical oscillator-a 'quantum drum'-coupled to a quantum bit, which is used to measure the quantum state of the resonator. We further show that we can controllably create single quantum excitations (phonons) in the resonator, thus taking the first steps to complete quantum control of a mechanical system.

10.
Nature ; 461(7263): 504-6, 2009 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-19779447

RESUMO

The measurement process plays an awkward role in quantum mechanics, because measurement forces a system to 'choose' between possible outcomes in a fundamentally unpredictable manner. Therefore, hidden classical processes have been considered as possibly predetermining measurement outcomes while preserving their statistical distributions. However, a quantitative measure that can distinguish classically determined correlations from stronger quantum correlations exists in the form of the Bell inequalities, measurements of which provide strong experimental evidence that quantum mechanics provides a complete description. Here we demonstrate the violation of a Bell inequality in a solid-state system. We use a pair of Josephson phase qubits acting as spin-1/2 particles, and show that the qubits can be entangled and measured so as to violate the Clauser-Horne-Shimony-Holt (CHSH) version of the Bell inequality. We measure a Bell signal of 2.0732 +/- 0.0003, exceeding the maximum amplitude of 2 for a classical system by 244 standard deviations. In the experiment, we deterministically generate the entangled state, and measure both qubits in a single-shot manner, closing the detection loophole. Because the Bell inequality was designed to test for non-classical behaviour without assuming the applicability of quantum mechanics to the system in question, this experiment provides further strong evidence that a macroscopic electrical circuit is really a quantum system.

11.
Phys Rev Lett ; 103(20): 200404, 2009 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-20365967

RESUMO

Quantum states inevitably decay with time into a probabilistic mixture of classical states due to their interaction with the environment and measurement instrumentation. We present the first measurement of the decoherence dynamics of complex photon states in a condensed-matter system. By controllably preparing a number of distinct quantum-superposed photon states in a superconducting microwave resonator, we show that the subsequent decay dynamics can be quantitatively described by taking into account only two distinct decay channels: energy relaxation and pure dephasing. Our ability to prepare specific initial quantum states allows us to measure the evolution of specific elements in the quantum density matrix in a very detailed manner that can be compared with theory.

12.
Phys Rev Lett ; 97(24): 247001, 2006 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-17280309

RESUMO

We fabricated high quality Nb/Al2O3/Ni(0.6)Cu(0.4)/Nb superconductor-insulator-ferromagnet-superconductor Josephson tunnel junctions. Using a ferromagnetic layer with a steplike thickness, we obtain a 0-pi junction, with equal lengths and critical currents of 0 and pi parts. The ground state of our 330 microm (1.3lambda(J)) long junction corresponds to a spontaneous vortex of supercurrent pinned at the 0-pi step and carrying approximately 6.7% of the magnetic flux quantum Phi(0). The dependence of the critical current on the applied magnetic field shows a clear minimum in the vicinity of zero field.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...