Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 5: 225, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24904540

RESUMO

Previous studies had suggested the presence of ammonium oxidizing Thaumarchaeota as well as nitrite oxidizing Bacteria in the subsurface spring called Franz Josef Quelle (FJQ), a slightly radioactive thermal mineral spring with a temperature of 43.6-47°C near the alpine village of Bad Gastein, Austria. The microbiological consortium of the FJQ was investigated for its utilization of nitrogen compounds and the putative presence of a subsurface nitrogen cycle. Microcosm experiments made with samples from the spring water, containing planktonic microorganisms, or from biofilms, were used in this study. Three slightly different media, enriched with vitamins and trace elements, and two incubation temperatures (30 and 40°C, respectively) were employed. Under aerobic conditions, high rates of conversion of ammonium to nitrite, as well as nitrite to nitrate were measured. Under oxygen-limited conditions nitrate was converted to gaseous compounds. Stable isotope probing with (15)NH4Cl or ((15)NH4)2SO4as sole energy sources revealed incorporation of (15)N into community DNA. Genomic DNA as well as RNA were extracted from all microcosms. The following genes or fragments of genes were successfully amplified, cloned and sequenced by standard PCR from DNA extracts: Ammonia monooxygenase subunit A (amoA), nitrite oxidoreductase subunits A and B (nxrA and nxrB), nitrate reductase (narG), nitrite reductase (nirS), nitric oxide reductases (cnorB and qnorB), nitrous oxide reductase (nosZ). Reverse transcription of extracted total RNA and real-time PCR suggested the expression of each of those genes. Nitrogen fixation (as probed with nifH and nifD) was not detected. However, a geological origin of NH(+) 4 in the water of the FJQ cannot be excluded, considering the silicate, granite and gneiss containing environment. The data suggested the operation of a nitrogen cycle in the subsurface environment of the FJQ.

2.
Appl Environ Microbiol ; 74(19): 5934-42, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18723663

RESUMO

Previous results from a 16S rRNA gene library analysis showed high diversity within the prokaryotic community of a subterranean radioactive thermal spring, the "Franz-Josef-Quelle" (FJQ) in Bad Gastein, Austria, as well as evidence for ammonia oxidation by crenarchaeota. This study reports further characterization of the community by denaturing gradient gel electrophoresis (DGGE) analysis, fluorescence in situ hybridization (FISH), and semiquantitative nitrification measurements. DGGE bands from three types of samples (filtered water, biofilms on glass slides, and naturally grown biofilms), including samples collected at two distinct times (January 2005 and July 2006), were analyzed. The archaeal community consisted mainly of Crenarchaeota of the soil-subsurface-freshwater group (group 1.1b) and showed a higher diversity than in the previous 16S rRNA gene library analysis, as was also found for crenarchaeal amoA genes. No bacterial amoA genes were detected. FISH analysis of biofilms indicated the presence of archaeal cells with an abundance of 5.3% (+/-4.5%) in the total 4',6-diamidino-2-phenylindole (DAPI)-stained community. Microcosm experiments of several weeks in duration showed a decline of ammonium that correlated with an increase of nitrite, the presence of crenarchaeal amoA genes, and the absence of bacterial amoA genes. The data suggested that only ammonia-oxidizing archaea (AOA) perform the first step of nitrification in this 45 degrees C environment. The crenarchaeal amoA gene sequences grouped within a novel cluster of amoA sequences from the database, originating from geothermally influenced environments, for which we propose the designation "thermal spring" cluster and which may be older than most AOA from soils on earth.


Assuntos
Crenarchaeota/metabolismo , Fontes Termais/microbiologia , Nitrogênio/metabolismo , Proteínas Arqueais/genética , Áustria , Biodiversidade , Análise por Conglomerados , Crenarchaeota/isolamento & purificação , DNA Arqueal/química , DNA Arqueal/genética , Eletroforese em Gel de Poliacrilamida , Hibridização in Situ Fluorescente , Dados de Sequência Molecular , Nitritos/metabolismo , Desnaturação de Ácido Nucleico , Filogenia , Compostos de Amônio Quaternário/metabolismo , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos
3.
Appl Environ Microbiol ; 73(1): 259-70, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17085711

RESUMO

Scanning electron microscopy revealed great morphological diversity in biofilms from several largely unexplored subterranean thermal Alpine springs, which contain radium 226 and radon 222. A culture-independent molecular analysis of microbial communities on rocks and in the water of one spring, the "Franz-Josef-Quelle" in Bad Gastein, Austria, was performed. Four hundred fifteen clones were analyzed. One hundred thirty-two sequences were affiliated with 14 bacterial operational taxonomic units (OTUs) and 283 with four archaeal OTUs. Rarefaction analysis indicated a high diversity of bacterial sequences, while archaeal sequences were less diverse. The majority of the cloned archaeal 16S rRNA gene sequences belonged to the soil-freshwater-subsurface (1.1b) crenarchaeotic group; other representatives belonged to the freshwater-wastewater-soil (1.3b) group, except one clone, which was related to a group of uncultivated Euryarchaeota. These findings support recent reports that Crenarchaeota are not restricted to high-temperature environments. Most of the bacterial sequences were related to the Proteobacteria (alpha, beta, gamma, and delta), Bacteroidetes, and Planctomycetes. One OTU was allied with Nitrospina sp. (delta-Proteobacteria) and three others grouped with Nitrospira. Statistical analyses suggested high diversity based on 16S rRNA gene analyses; the rarefaction plot of archaeal clones showed a plateau. Since Crenarchaeota have been implicated recently in the nitrogen cycle, the spring environment was probed for the presence of the ammonia monooxygenase subunit A (amoA) gene. Sequences were obtained which were related to crenarchaeotic amoA genes from marine and soil habitats. The data suggested that nitrification processes are occurring in the subterranean environment and that ammonia may possibly be an energy source for the resident communities.


Assuntos
Amônia/metabolismo , Archaea/classificação , Bactérias/classificação , Fontes Termais/microbiologia , Rádio (Elemento) , Radônio , Archaea/genética , Archaea/crescimento & desenvolvimento , Áustria , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Biofilmes/crescimento & desenvolvimento , Crenarchaeota/classificação , Crenarchaeota/isolamento & purificação , DNA Arqueal/análise , DNA Bacteriano/análise , Ecossistema , Fontes Termais/química , Dados de Sequência Molecular , Oxirredução , Oxirredutases/genética , Proteobactérias/classificação , Proteobactérias/genética , Proteobactérias/crescimento & desenvolvimento , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA