Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Gen Virol ; 86(Pt 8): 2315-2322, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16033979

RESUMO

Soon after infection, poliovirus (PV) shuts off host-cell transcription, which is catalysed by all three cellular RNA polymerases. rRNA constitutes more than 50 % of all cellular RNA and is transcribed from rDNA by RNA polymerase I (pol I). Here, evidence has been provided suggesting that both pol I transcription factors, SL-1 (selectivity factor) and UBF (upstream binding factor), are modified and inactivated in PV-infected cells. The viral protease 3C(pro) appeared to cleave the TATA-binding protein-associated factor 110 (TAF(110)), a subunit of the SL-1 complex, into four fragments in vitro. In vitro protease-cleavage assays using various mutants of TAF(110) and purified 3C(pro) indicated that the Q(265)G(266) and Q(805)G(806) sites were cleaved by 3C(pro). Both SL-1 and UBF were depleted in PV-infected cells and their disappearance correlated with pol I transcription inhibition. rRNA synthesis from a template containing a human pol I promoter demonstrated that both SL-1 and UBF were necessary to restore pol I transcription fully in PV-infected cell extracts. These results suggested that both SL-1 and UBF are transcriptionally inactivated in PV-infected HeLa cells.


Assuntos
DNA Ribossômico/genética , Proteínas Pol1 do Complexo de Iniciação de Transcrição/metabolismo , Poliovirus/enzimologia , RNA Polimerase I/antagonistas & inibidores , Transcrição Gênica , Proteases Virais 3C , Cisteína Endopeptidases/metabolismo , Glutamina , Glicina , Células HeLa , Humanos , Regiões Promotoras Genéticas , RNA Polimerase I/genética , Fatores Associados à Proteína de Ligação a TATA/química , Fatores Associados à Proteína de Ligação a TATA/metabolismo , Fator de Transcrição TFIID/química , Fator de Transcrição TFIID/metabolismo , Proteínas Virais/metabolismo
2.
J Virol ; 78(17): 9243-56, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15308719

RESUMO

Poliovirus-encoded nonstructural polypeptide 2C is a multifunctional protein that plays an important role in viral RNA replication. 2C interacts with both intracellular membranes and virus-specific RNAs and has ATPase and GTPase activities. Extensive computer analysis of the 2C sequence revealed that in addition to the known ATPase-, GTPase-, membrane-, and RNA-binding domains it also contains several "serpin" (serine protease inhibitor) motifs. We provide experimental evidence suggesting that 2C is indeed capable of regulating virus-encoded proteases. The purified 2C protein inhibits 3C(pro)-catalyzed cleavage of cellular transcription factors at Q-G sites in vitro. It also inhibits cleavage of a viral precursor by the other viral protease, 2A(pro). However, at least three cellular proteases appear not to be inhibited by 2C in vitro. The 2C-associated protease inhibitory activity can be depleted by anti-2C antibody. A physical interaction between 2C and His-tagged 3C(pro) can be demonstrated in vitro by coimmunoprecipitation of 2C with anti-His antibody. Deletion analysis suggests that the 2C central and C-terminal domains that include several serpin motifs are important for 3C(pro)-inhibitory activity. To examine the 2C protease inhibitory activity in vivo, stable HeLa cell lines were made that express 2C in an inducible fashion. Infection of 2C-expressing cells with poliovirus led to incomplete (or inefficient) processing of viral precursor polypeptides compared to control cell lines containing the vector alone. These results suggest that 2C can negatively regulate the viral protease 3C(pro). The possible role of the 2C protease inhibitory activity in viral RNA replication is discussed.


Assuntos
Proteínas de Transporte/metabolismo , Cisteína Endopeptidases/metabolismo , Peptídeos/metabolismo , Poliovirus/metabolismo , Proteínas não Estruturais Virais/metabolismo , Proteínas Virais/antagonistas & inibidores , Proteínas Virais/metabolismo , Proteases Virais 3C , Motivos de Aminoácidos , Sequência de Aminoácidos , Anticorpos Antivirais/imunologia , Proteínas de Transporte/química , Proteínas de Transporte/genética , Proteínas de Transporte/imunologia , Catálise , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Enteropeptidase/metabolismo , Células HeLa , Humanos , Dados de Sequência Molecular , Peptídeos/química , Peptídeos/genética , Peptídeos/imunologia , Poliovirus/enzimologia , Poliovirus/genética , Poliovirus/fisiologia , Ligação Proteica , Precursores de Proteínas/metabolismo , Processamento de Proteína Pós-Traducional , RNA Polimerase II/metabolismo , RNA Viral/biossíntese , RNA Viral/genética , Deleção de Sequência/genética , Serpinas/química , Trombina/metabolismo , Transcrição Gênica , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/imunologia
3.
Virus Res ; 95(1-2): 75-85, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12921997

RESUMO

Mammalian cells infected with poliovirus, the prototype member of the picornaviridae family, undergo rapid macromolecular and metabolic changes resulting in efficient replication and release of virus from infected cells. Although this virus is predominantly cytoplasmic, it does shut-off transcription of all three cellular transcription systems. Both biochemical and genetic studies have shown that a virally encoded protease, 3C(pro), is responsible for host cell transcription shut-off. The 3C protease cleaves a number of RNA polymerase II transcription factors including the TATA-binding protein (TBP), the cyclic AMP-responsive element binding protein (CREB), the Octamer binding protein (Oct-1), p53, and RNA polymerase III transcription factor IIICalpha, and Polymerase I factor SL-1. Most of these cleavages occur at glutamine-glycine bonds. Additionally, a second viral protease, 2A(pro), also cleaves TBP at a tyrosine-glycine bond. The latter cleavage could be responsible for shut-off of small nuclear RNA transcription. Recent studies indicate that the viral protease-polymerase precursor 3CD can enter nucleus in poliovirus-infected cells. The nuclear localization signal (NLS) present within the 3D sequence appears to play a role in the nuclear entry of 3CD. Thus, 3C may be delivered to the infected cell nucleus in the form the precursor 3CD or other 3C-containing precursors. Auto-proteolytic cleavage of these precursors could then generate 3C. Thus, for a small RNA virus that strictly replicates in the cytoplasm, a portion of its life cycle does include interaction with the host cell nucleus.


Assuntos
Transporte Ativo do Núcleo Celular , Núcleo Celular/virologia , Citoplasma/virologia , Vírus de RNA/patogenicidade , Proteínas Virais/metabolismo , Proteases Virais 3C , Animais , Núcleo Celular/metabolismo , Cisteína Endopeptidases/metabolismo , Células HeLa , Humanos , Vírus de RNA/metabolismo
4.
J Gen Virol ; 80 ( Pt 9): 2481-2489, 1999 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-10501505

RESUMO

Previous studies have implicated disulfide bonds between Vp1 molecules in the stabilization of the simian virus 40 (SV40) capsid. To identify the cysteine residues involved in intermolecular disulfide interactions, systematic oligo-directed mutagenesis of cysteine codons to serine codons was initiated. Wild-type and mutant Vp1 proteins were produced in rabbit reticulocyte lysates and were allowed to interact post-translationally. Disulfide-linked Vp1 complexes were assessed via non-reducing SDS-PAGE and via sucrose-gradient sedimentation. Wild-type Vp1 forms 7S pentamers followed by 12S disulfide-linked multi-pentameric complexes in cell-free lysates. Mutagenesis of all seven cysteine codons abolished Vp1 12S complexes, but did not affect pentamer formation. A quadruple Vp1 mutant at Cys49, Cys87, Cys254 and Cys267 continued to form 12S complexes, whereas the major products of the Cys9, Cys104 and Cys207 triple mutant Vp1 were 7S pentamers. Single and double mutant Vp1 proteins at the three cysteines affected continued to form 12S complexes, but to a lesser extent. Thus, inter-pentamer disulfide bonds at Cys9, Cys104 and Cys207 are essential and sufficient for stabilization of Vp1 complexes in cell-free lysates. These results are in agreement with previous structural studies of SV40 that implicated the same three residues in disulfide linkage in the capsid. Possible parameters for the involvement of the three cysteines are discussed.


Assuntos
Capsídeo/química , Vírus 40 dos Símios/química , Animais , Proteínas do Capsídeo , Sistema Livre de Células , Cisteína/química , Dissulfetos/química , Coelhos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...