Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Nucl Med ; 65(5): 670-678, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38514082

RESUMO

Since the development of amyloid tracers for PET imaging, there has been interest in quantifying amyloid burden in the brains of patients with Alzheimer disease. Quantitative amyloid PET imaging is poised to become a valuable approach in disease staging, theranostics, monitoring, and as an outcome measure for interventional studies. Yet, there are significant challenges and hurdles to overcome before it can be implemented into widespread clinical practice. On November 17, 2022, the U.S. Food and Drug Administration, Society of Nuclear Medicine and Molecular Imaging, and Medical Imaging and Technology Alliance cosponsored a public workshop comprising experts from academia, industry, and government agencies to discuss the role of quantitative brain amyloid PET imaging in staging, prognosis, and longitudinal assessment of Alzheimer disease. The workshop discussed a range of topics, including available radiopharmaceuticals for amyloid imaging; the methodology, metrics, and analytic validity of quantitative amyloid PET imaging; its use in disease staging, prognosis, and monitoring of progression; and challenges facing the field. This report provides a high-level summary of the presentations and the discussion.


Assuntos
Amiloide , Encéfalo , Tomografia por Emissão de Pósitrons , Humanos , Tomografia por Emissão de Pósitrons/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Amiloide/metabolismo , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/metabolismo
2.
J Nucl Med ; 61(11): 1672-1677, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32284396

RESUMO

McCune-Albright syndrome (MAS) is a mosaic disorder arising from gain-of-function mutations in the GNAS gene, which encodes the 3',5'-cyclic adenosine monophosphate (cAMP) pathway-associated G-protein, Gsα. Clinical manifestations of MAS in a given individual, including fibrous dysplasia, are determined by the timing and location of the GNAS mutation during embryogenesis, the tissues involved, and the role of Gsα in the affected tissues. The Gsα mutation results in dysregulation of the cAMP signaling cascade, leading to upregulation of phosphodiesterase type 4 (PDE4), which catalyzes the hydrolysis of cAMP. Increased cAMP levels have been found in vitro in both animal models of fibrous dysplasia and in cultured cells from individuals with MAS but not in humans with fibrous dysplasia. PET imaging of PDE4 with 11C-(R)-rolipram has been used successfully to study the in vivo activity of the cAMP cascade. To date, it remains unknown whether fibrous dysplasia and other symptoms of MAS, including neuropsychiatric impairments, are associated with increased PDE4 activity in humans. Methods:11C-(R)-rolipram whole-body and brain PET scans were performed on 6 individuals with MAS (3 for brain scans and 6 for whole-body scans) and 9 healthy controls (7 for brain scans and 6 for whole-body scans). Results:11C-(R)-rolipram binding correlated with known locations of fibrous dysplasia in the periphery of individuals with MAS; no uptake was observed in the bones of healthy controls. In peripheral organs and the brain, no difference in 11C-(R)-rolipram uptake was noted between participants with MAS and healthy controls. Conclusion: This study is the first to find evidence for increased cAMP activity in areas of fibrous dysplasia in vivo. No differences in brain uptake between MAS participants and controls were detected-a finding that could be due to several reasons, including the limited anatomic resolution of PET. Nevertheless, the results confirm the usefulness of PET scans with 11C-(R)-rolipram to indirectly measure increased cAMP pathway activation in human disease.


Assuntos
Osso e Ossos/diagnóstico por imagem , Radioisótopos de Carbono/farmacocinética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Displasia Fibrosa Poliostótica/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Rolipram/farmacocinética , Adulto , Osso e Ossos/patologia , Encéfalo/diagnóstico por imagem , Feminino , Humanos , Masculino , Imagem Corporal Total
3.
Epilepsia ; 59(8): 1507-1517, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30030837

RESUMO

OBJECTIVE: The role of neuroinflammation in mesial temporal lobe epilepsy (MTLE), and how it relates to drug resistance, remains unclear. Expression levels of the inflammatory enzymes cyclooxygenase (COX)-1 and COX-2 have been found to be increased in animal models of epilepsy. Knowing the cellular expression of COX-1 and COX-2 is the key to understanding their functional role; however, only 3 studies have investigated COX-2 expression in epilepsy in humans, and there are no reports on COX-1. In addition, previous studies have shown that certain inflammatory proteins up-regulate ATP binding cassette (ABC) transporter expression (thought to be responsible for drug resistance), but this relationship remains unclear in human tissue. This study sought to measure the expression of COX-1, COX-2, and translocator protein 18 kDa (TSPO, an inflammation biomarker acting as a positive control), as well as ABC transporters P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP), in brain tissue samples from people with drug-resistant MTLE. METHODS: Formalin-fixed paraffin-embedded surgical brain tissue was obtained from 33 patients with drug-resistant MTLE. Multiplex immunofluorescence was used to quantify the expression and distribution of COX-1, COX-2, TSPO, P-gp, and BCRP. RESULTS: COX-1 was expressed in microglia, and COX-2 and TSPO were expressed in microglia and neurons. BCRP density correlated significantly with TSPO density, suggesting a potential relationship between inflammatory markers and efflux transporters. SIGNIFICANCE: To the best of our knowledge, this study is the first to measure the cellular expression of COX-1, COX-2, and TSPO in microglia, astrocytes, and neurons in surgical brain tissue samples from patients with drug-resistant MTLE. Further research is needed to determine the effects of the COX inflammatory pathway in epilepsy, and how it relates to the expression of the ABC transporters P-gp and BCRP.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Ciclo-Oxigenase 1/metabolismo , Ciclo-Oxigenase 2/metabolismo , Epilepsia Resistente a Medicamentos/metabolismo , Regulação da Expressão Gênica/fisiologia , Receptores de GABA/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Adolescente , Adulto , Epilepsia Resistente a Medicamentos/patologia , Epilepsia do Lobo Temporal/metabolismo , Epilepsia do Lobo Temporal/patologia , Feminino , Humanos , Masculino , Microglia/metabolismo , Pessoa de Meia-Idade , Proteínas de Neoplasias/metabolismo , Neurônios/metabolismo , Estatísticas não Paramétricas , Adulto Jovem
4.
Drug Metab Dispos ; 44(2): 275-82, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26658428

RESUMO

Since its development, tariquidar (TQR; XR9576; N-[2-[[4-[2-(6,7-Dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)ethyl]phenyl]carbamoyl]-4,5-dimethoxyphenyl]quinoline-3-carboxamide) has been widely regarded as one of the more potent inhibitors of P-glycoprotein (P-gp), an efflux transporter of the ATP-binding cassette (ABC) transporter family. A third-generation inhibitor, TQR exhibits high affinity for P-gp, although it is also a substrate of another ABC transporter, breast cancer resistance protein (BCRP). Recently, several studies have questioned the mechanism by which TQR interfaces with P-gp, suggesting that TQR is a substrate for P-gp instead of a noncompetitive inhibitor. We investigated TQR and its interaction with human and mouse P-gp to determine if TQR is a substrate of P-gp in vitro. To address these questions, we used multiple in vitro transporter assays, including cytotoxicity, flow cytometry, accumulation, ATPase, and transwell assays. A newly generated BCRP cell line was used as a positive control that demonstrates TQR-mediated transport. Based on our results, we conclude that TQR is a potent inhibitor of both human and mouse P-gp and shows no signs of being a substrate at the concentrations tested. These in vitro data further support our position that the in vivo uptake of [(11)C]TQR into the brain can be explained by its high-affinity binding to P-gp and by it being a substrate of BCRP, followed by amplification of the brain signal by ionic trapping in acidic lysosomes.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Quinolinas/metabolismo , Quinolinas/farmacologia , Células 3T3 , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Adenosina Trifosfatases/metabolismo , Animais , Encéfalo/metabolismo , Linhagem Celular , Linhagem Celular Transformada , Humanos , Células KB , Células MCF-7 , Camundongos
5.
PLoS One ; 10(12): e0140647, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26656737

RESUMO

Changes in endogenous dopamine levels can be detected in humans using positron emission tomography scans by measuring the amount by which a specific D2/3 radioligand is displaced. In some cases, a challenge drug such as amphetamine is introduced to increase the amount of dopamine released into the synaptic cleft. Although intravenous amphetamine is often utilized, oral amphetamine has been shown to be just as effective in increasing endogenous dopamine levels. Based on our own use of oral amphetamine as a challenge drug, we have retroactively reviewed our study charts to determine the cardiovascular safety of 0.5 mg kg(-1) oral d-amphetamine. Of 172 amphetamine administrations in 144 individuals, only 2.8% of subjects experienced any transient adverse effects. In addition, we found no clinically relevant differences in increases of vital signs between healthy controls and patients. We therefore reaffirm the safety of 0.5 mg kg(-1) oral amphetamine in subjects previously screened for cardiovascular risk factors.


Assuntos
Anfetamina/efeitos adversos , Tomografia por Emissão de Pósitrons , Administração Oral , Adolescente , Adulto , Anfetamina/administração & dosagem , Anfetamina/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Feminino , Frequência Cardíaca/efeitos dos fármacos , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
6.
J Pharmacol Exp Ther ; 354(3): 384-93, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26148857

RESUMO

Imaging ATP-binding cassette (ABC) transporter activity in vivo with positron emission tomography requires both a substrate and a transporter inhibitor. However, for ABCG2, there is no inhibitor proven to be specific to that transporter alone at the blood-brain barrier. Ko143 [[(3S,6S,12aS)-1,2,3,4,6,7,12,12a-octahydro-9-methoxy-6-(2-methylpropyl)-1,4-dioxopyrazino[1',2':1,6]pyrido[3,4- b]indole-3-propanoic acid 1,1-dimethylethyl ester], a nontoxic analog of fungal toxin fumitremorgin C, is a potent inhibitor of ABCG2, although its specificity in mouse and human systems is unclear. This study examined the selectivity of Ko143 using human embryonic kidney cell lines transfected with ABCG2, ABCB1, or ABCC1 in several in vitro assays. The stability of Ko143 in rat plasma was measured using high performance liquid chromatography. Our results show that, in addition to being a potent inhibitor of ABCG2, at higher concentrations (≥1 µM) Ko143 also has an effect on the transport activity of both ABCB1 and ABCC1. Furthermore, Ko143 was found to be unstable in rat plasma. These findings indicate that Ko143 lacks specificity for ABCG2 and this should be taken into consideration when using Ko143 for both in vitro and in vivo experiments.


Assuntos
Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Transportadores de Cassetes de Ligação de ATP/metabolismo , Adenosina/análogos & derivados , Células 3T3 , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Adenosina/farmacologia , Animais , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/fisiologia , Barreira Hematoencefálica/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Dicetopiperazinas , Células HEK293 , Compostos Heterocíclicos de 4 ou mais Anéis , Humanos , Células MCF-7 , Camundongos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/antagonistas & inibidores , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Transportadores de Ânions Orgânicos/antagonistas & inibidores , Transportadores de Ânions Orgânicos/metabolismo , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...