Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 148
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(27): 18538-18546, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38888161

RESUMO

Diatoms, unicellular marine organisms, harness short peptide repeats of the protein silaffin to transform silicic acid into biosilica nanoparticles. This process has been a white whale for material scientists due to its potential in biomimetic applications, ranging from medical to microelectronic fields. Replicating diatom biosilicification will depend on a thorough understanding of the silaffin peptide structure during the reaction, yet existing models in the literature offer conflicting views on peptide folding during silicification. In our study, we employed two-dimensional infrared spectroscopy (2DIR) within the amide I region to determine the secondary structure of the silaffin repeat unit 5 (R5), both pre- and post-interaction with silica. The 2DIR experiments are complemented by molecular dynamics (MD) simulations of pure R5 reacting with silicate. Subsequently, theoretical 2DIR spectra calculated from these MD trajectories allowed us to compare calculated spectra with experimental data, and to determine the diverse structural poses of R5. Our findings indicate that unbound R5 predominantly forms ß-strand structures alongside various atypical secondary structures. Post-silicification, there's a noticeable shift: a decrease in ß-strands coupled with an increase in turn-type and bend-type configurations. We theorize that this structural transformation stems from silicate embedding within R5's hydrogen-bond network, prompting the peptide backbone to contract and adapt around the biosilica precursors.


Assuntos
Diatomáceas , Simulação de Dinâmica Molecular , Espectrofotometria Infravermelho , Diatomáceas/química , Estrutura Secundária de Proteína , Peptídeos/química , Fragmentos de Peptídeos , Precursores de Proteínas
2.
Chemistry ; 30(39): e202400728, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38804868

RESUMO

Urea is believed to have been essential to the synthesis of prebiotic nucleotides and thereby the RNA or DNA of the first lifeforms. Models suggesting that life began in wet-dry cycles around shallow aquatic ponds imply that reactants such as urea were exposed to deep ultraviolet irradiation from the young sun. Detrimental photodissociation of urea induced by deep UV excitation potentially challenges these models. We here follow the primary deep ultraviolet photochemistry of aqueous urea. The data show that urea is barely excited at 200 nm due to weak ultraviolet absorption. The likelihood of photodissociation is further reduced by strong intra-molecular coupling of the CN and CO stretch vibrations accompanied by an efficient dissipation of the excitation energy to the surrounding water molecules mitigated by urea-water hydrogen bonds. We find that 54±5 % of the excited urea molecules dissociate. Reactions between the photoproducts and surrounding solvent molecules form carbamic acid or the carbamate anions within 0.6 ps. The molecules that do not dissociate return to the electronic ground state in 2 ps. Interestingly, the photodissociation processes of urea in the aqueous phase is different from earlier reported reactions observed following the VUV photolysis of urea in noble gas matrices and highlight the potential influence of water on the prebiotic photochemistry.

3.
J Phys Chem Lett ; 15(18): 4933-4939, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38686860

RESUMO

The vibrational coupling between protein backbone modes and the role of water interactions are important topics in biomolecular spectroscopy. Our work reports the first study of the coupling between amide I and amide A modes within peptides and proteins with secondary structure and water contacts. We use two-color two-dimensional infrared (2D IR) spectroscopy and observe cross peaks between amide I and amide A modes. In experiments with peptides with different secondary structures and side chains, we observe that the spectra are sensitive to secondary structure. Water interactions affect the cross peaks, which may be useful as probes for the accessibility of protein sites to hydration water. Moving to two-color 2D IR spectra of proteins, the data demonstrate that the cross peaks integrate the sensitivities of both amide I and amide A spectra and that a two-color detection scheme may be a promising tool for probing secondary structures in proteins.


Assuntos
Amidas , Proteínas , Espectrofotometria Infravermelho , Água , Espectrofotometria Infravermelho/métodos , Água/química , Proteínas/química , Amidas/química , Estrutura Secundária de Proteína , Peptídeos/química
4.
Nat Commun ; 15(1): 1978, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438353

RESUMO

The deep ultraviolet photochemistry of aqueous pyruvate is believed to have been essential to the origin of life, and near ultraviolet excitation of pyruvate in aqueous aerosols is assumed to contribute significantly to the photochemistry of the Earth's atmosphere. However, the primary photochemistry of aqueous pyruvate is unknown. Here we study the susceptibility of aqueous pyruvate to photodissociation by deep ultraviolet and near ultraviolet irradiation with femtosecond spectroscopy supported by density functional theory calculations. The primary photo-dynamics of the aqueous pyruvate show that upon deep-UV excitation at 200 nm, about one in five excited pyruvate anions have dissociated by decarboxylation 100 ps after the excitation, while the rest of the pyruvate anions return to the ground state. Upon near-UV photoexcitation at a wavelength of 340 nm, the dissociation yield of aqueous pyruvate 200 ps after the excitation is insignificant and no products are observed. The experimental results are explained by our calculations, which show that aqueous pyruvate anions excited at 200 nm have sufficient excess energy for decarboxylation, whereas excitation at 340 nm provides the aqueous pyruvate anions with insufficient energy to overcome the decarboxylation barrier.

6.
J Phys Chem B ; 128(2): 451-464, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38190651

RESUMO

It is not well understood why severe acute respiratory syndrome (SARS)-CoV-2 spreads much faster than other ß-coronaviruses such as SARS-CoV and Middle East respiratory syndrome (MERS)-CoV. In a previous publication, we predicted the binding of the N-terminal domain (NTD) of SARS-CoV-2 spike to sialic acids (SAs). Here, we experimentally validate this interaction and present simulations that reveal a second possible interaction between SAs and the spike protein via a binding site located in the receptor-binding domain (RBD). The predictions from molecular-dynamics simulations and the previously-published 2D-Zernike binding-site recognition approach were validated through flow-induced dispersion analysis (FIDA)─which reveals the capability of the SARS-CoV-2 spike to bind to SA-containing (glyco)lipid vesicles, and flow-cytometry measurements─which show that spike binding is strongly decreased upon inhibition of SA expression on the membranes of angiotensin converting enzyme-2 (ACE2)-expressing HEK cells. Our analyses reveal that the SA binding of the NTD and RBD strongly enhances the infection-inducing ACE2 binding. Altogether, our work provides in silico, in vitro, and cellular evidence that the SARS-CoV-2 virus utilizes a two-receptor (SA and ACE2) strategy. This allows the SARS-CoV-2 spike to use SA moieties on the cell membrane as a binding anchor, which increases the residence time of the virus on the cell surface and aids in the binding of the main receptor, ACE2, via 2D diffusion.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Enzima de Conversão de Angiotensina 2 , Ligação Proteica , Sítios de Ligação
7.
J Phys Chem Lett ; 14(49): 11030-11035, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38047768

RESUMO

The misfolding of α-synuclein (αS) into amyloid aggregates is catalyzed by hydrophobic surfaces and associated with severe brain disorders, such as Parkinson's disease. Despite the important role of interfaces, the three-dimensional structure of αS at the interfaces is still not clear. We report interface-specific sum frequency generation (SFG) experiments of monomeric αS binding to the air-water interface, a model system for the important hydrophobic surfaces. We combine the SFG spectra with calculations of theoretical spectra based on molecular dynamics simulations to show that αS, which is an intrinsically disordered protein in solution, folds into a defined, mostly helical secondary structure at the air-water interface. The binding pose resembles an umbrella shape, where the C-terminus protrudes into the water phase, while the N-terminus and the NAC region span the canopy at the interface. In this binding pose, αS is prone to aggregate, which could explain the catalytic effect of hydrophobic interfaces and air bubbles on αS fibrillation.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Humanos , alfa-Sinucleína/química , Água , Doença de Parkinson/metabolismo , Análise Espectral , Simulação de Dinâmica Molecular
8.
J Phys Chem Lett ; 14(44): 9819-9823, 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37889607

RESUMO

The orientation of proteins at interfaces has a profound effect on the function of proteins. For nanoparticles (NPs) in a biological environment, protein orientation determines the toxicity, function, and identity of the NP. Thus, understanding how proteins orientate at NP surfaces is a critical parameter in controlling NP biochemistry. While planar surfaces are often used to model NP interfaces for protein orientation studies, it has been shown recently that proteins can orient very differently on NP surfaces. This study uses sum frequency scattering vibrational spectroscopy of the model helical leucine-lysine (LK) peptide on NPs of different sizes to determine the cause for the orientation effects. The data show that, for low dielectric constant materials, the orientation of the helical LK peptide is a function of the coulombic forces between peptides across different particle volumes. This finding strongly suggests that flat model systems are only of limited use for determining protein orientation at NP interfaces and that charge interactions should be considered when designing medical NPs or assessing NP biocompatibility.


Assuntos
Nanopartículas , Peptídeos , Peptídeos/química , Análise Espectral/métodos , Proteínas/química , Lisina/química
9.
Nat Commun ; 14(1): 5731, 2023 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-37723164

RESUMO

The amyloid aggregation of α-synuclein (αS), related to Parkinson's disease, can be catalyzed by lipid membranes. Despite the importance of lipid surfaces, the 3D-structure and orientation of lipid-bound αS is still not known in detail. Here, we report interface-specific vibrational sum-frequency generation (VSFG) experiments that reveal how monomeric αS binds to an anionic lipid interface over a large range of αS-lipid ratios. To interpret the experimental data, we present a frame-selection method ("ViscaSelect") in which out-of-equilibrium molecular dynamics simulations are used to generate structural hypotheses that are compared to experimental amide-I spectra via excitonic spectral calculations. At low and physiological αS concentrations, we derive flat-lying helical structures as previously reported. However, at elevated and potentially disease-related concentrations, a transition to interface-protruding αS structures occurs. Such an upright conformation promotes lateral interactions between αS monomers and may explain how lipid membranes catalyze the formation of αS amyloids at elevated protein concentrations.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Humanos , Amidas , Proteínas Amiloidogênicas , Lipídeos
11.
Langmuir ; 39(18): 6447-6454, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37125843

RESUMO

When a nanoparticle (NP) is introduced into a biological environment, its identity and interactions are immediately attributed to the dense layer of proteins that quickly covers the particle. The formation of this layer, dubbed the protein corona, is in general a combination of proteins interacting with the surface of the NP and a contest between other proteins for binding sites either at the surface of the NP or upon the dense layer. Despite the importance for surface engineering and drug development, the molecular mechanisms and structure behind interfacial biomolecule action have largely remained elusive. We use ultrafast sum frequency scattering (SFS) spectroscopy to determine the structure and the mode of action by which these biomolecules interact with and manipulate interfaces. The majority of work in the field of sum frequency generation has been done on flat model interfaces. This limits some important membrane properties such as membrane fluidity and dimensionality─important factors in biomolecule-membrane interactions. To move toward three-dimensional (3D) nanoscopic interfaces, we utilize SFS spectroscopy to interrogate the surface of 3D lipid monolayers, which can be used as a model lipid-based nanocarrier system. In this study, we have utilized SFS spectroscopy to follow the action of lysozyme. SFS spectra in the amide I region suggest that there is lysozyme at the interface and that the lysozyme induces an increased lipid monolayer order. The binding of lysozyme with the NP is demonstrated by an increase in acyl chain order determined by the ratio of the CH3 symmetric and CH2 symmetric peak amplitudes. Furthermore, the lipid headgroup orientation s-PO2- change strongly supports lysozyme insertion into the lipid layer causing lipid disruption and reorientation. Altogether, with SFS, we have made a huge stride toward understanding the binding and structure change of proteins within the protein corona.


Assuntos
Fosfolipídeos , Coroa de Proteína , Fosfolipídeos/química , Muramidase/química , Análise Espectral/métodos , Proteínas/química
12.
Phys Chem Chem Phys ; 25(20): 14104-14116, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37161877

RESUMO

We study the primary photolysis dynamics of aqueous carbonate, CO32-(aq), and hydrogen carbonate, HCO3-(aq), when they are excited at λ = 200 nm. The photolysis is recorded with sub-picosecond time resolution using UV pump-Vis probe and UV pump-IR probe transient absorption spectroscopy and interpreted with the aid of density functional theory calculations. When CO32- is excited via single photon absorption at λ = 200 nm, Φ(t = 20 ps) = 82 ± 5% of the excited di-anions either detach an electron or dissociate. The electron detachment takes place from the excited state in t < 1 ps and forms ground state CO3˙- and eaq-. Dissociation occurs from both the electronic ground and excited states of CO32-. Dissociation from the CO32- excited state is assisted by water molecules and forms CO2˙-, OH˙ and OH-. The dissociation occurs both directly from the Franck-Condon region in t < 1 ps and indirectly with a time constant of τ = 13.9 ± 0.5 ps as the excited state relaxes. Dissociation of vibrationally excited CO32- molecules in the electronic ground state is also assisted by water molecules and forms CO2 and two OH- anions. The dissociation and subsequent vibrational relaxation of CO2 occur with a time constant of τ = 10.2 ± 0.5 ps. The residual 1 - Φ(t = 20 ps) = 18 ± 5% of the excited CO32- di-anions return by internal conversion to the equilibrated CO32- ground state with a time constant of τ = 4.0 ± 0.4 ps. The extinction coefficient of aqueous hydrogen carbonate HCO3-(aq) at λ = 200 nm is an order of magnitude smaller than that of carbonate, so even though the hydrogen carbonate anions dominate the carbonate di-anions in the hydrogen carbonate solution, the primary photolysis of hydrogen carbonate is obscured by the photo-products of carbonate. Hence, we are unable to assess the primary photolysis of hydrogen carbonate. However, the weak one-photon absorption facilitates two-photon ionization of water, which forms hydronium, H3O+, cations. The sudden increase in the acidity induced by two-photon ionization protonates the ground state hydrogen carbonate molecules, thus offering a rare spectroscopic glimpse of aqueous carbonic acid.

13.
J Am Chem Soc ; 145(17): 9777-9785, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-37075197

RESUMO

The susceptibility of aqueous dipeptides to photodissociation by deep ultraviolet irradiation is studied by femtosecond spectroscopy supported by density functional theory calculations. The primary photodynamics of the aqueous dipeptides of glycyl-glycine (gly-gly), alalyl-alanine (ala-ala), and glycyl-alanine (gly-ala) show that upon photoexcitation at a wavelength of 200 nm, about 10% of the excited dipeptides dissociate by decarboxylation within 100 ps, while the rest of the dipeptides return to their native ground state. Accordingly, the vast majority of the excited dipeptides withstand the deep ultraviolet excitation. In those relatively few cases, where excitation leads to dissociation, the measurements show that deep ultraviolet irradiation breaks the Cα-C bond rather than the peptide bond. The peptide bond is thereby left intact, and the decarboxylated dipeptide moiety is open to subsequent reactions. The experiments indicate that the low photodissociation yield and in particular the resilience of the peptide bond to dissociation are due to rapid internal conversion from the excited state to the ground state, followed by efficient vibrational relaxation facilitated by intramolecular coupling among the carbonate and amide modes. Thus, the entire process of internal conversion and vibrational relaxation to thermal equilibrium on the dipeptide ground state occurs on a time scale of less than 2 ps.


Assuntos
Dipeptídeos , Raios Ultravioleta , Dipeptídeos/química , Análise Espectral , Íons , Alanina
14.
Nat Commun ; 14(1): 2156, 2023 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-37059718

RESUMO

Dynamin-like proteins are membrane remodeling GTPases with well-understood functions in eukaryotic cells. However, bacterial dynamin-like proteins are still poorly investigated. SynDLP, the dynamin-like protein of the cyanobacterium Synechocystis sp. PCC 6803, forms ordered oligomers in solution. The 3.7 Å resolution cryo-EM structure of SynDLP oligomers reveals the presence of oligomeric stalk interfaces typical for eukaryotic dynamin-like proteins. The bundle signaling element domain shows distinct features, such as an intramolecular disulfide bridge that affects the GTPase activity, or an expanded intermolecular interface with the GTPase domain. In addition to typical GD-GD contacts, such atypical GTPase domain interfaces might be a GTPase activity regulating tool in oligomerized SynDLP. Furthermore, we show that SynDLP interacts with and intercalates into membranes containing negatively charged thylakoid membrane lipids independent of nucleotides. The structural characteristics of SynDLP oligomers suggest it to be the closest known bacterial ancestor of eukaryotic dynamin.


Assuntos
Synechocystis , Synechocystis/genética , Synechocystis/metabolismo , Eucariotos/metabolismo , Células Eucarióticas/metabolismo , Dinaminas/metabolismo , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Tilacoides/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
15.
J Phys Chem B ; 127(2): 577-589, 2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36608331

RESUMO

Dysferlin is a 230 kD protein that plays a critical function in the active resealing of micron-sized injuries to the muscle sarcolemma by recruiting vesicles to patch the injured site via vesicle fusion. Muscular dystrophy is observed in humans when mutations disrupt this repair process or dysferlin is absent. While lipid binding by dysferlin's C2A domain (dysC2A) is considered fundamental to the membrane resealing process, the molecular mechanism of this interaction is not fully understood. By applying nonlinear surface-specific vibrational spectroscopy, we have successfully demonstrated that dysferlin's N-terminal C2A domain (dysC2A) alters its binding orientation in response to a membrane's lipid composition. These experiments reveal that dysC2A utilizes a generic electrostatic binding interaction to bind to most anionic lipid surfaces, inserting its calcium binding loops into the lipid surface while orienting its ß-sheets 30-40° from surface normal. However, at lipid surfaces, where PI(4,5)P2 is present, dysC2A tilts its ß-sheets more than 60° from surface normal to expose a polybasic face, while it binds to the PI(4,5)P2 surface. Both lipid binding mechanisms are shown to occur alongside dysC2A-induced lipid clustering. These different binding mechanisms suggest that dysC2A could provide a molecular cue to the larger dysferlin protein as to signal whether it is bound to the sarcolemma or another lipid surface.


Assuntos
Membrana Celular , Disferlina , Humanos , Membrana Celular/química , Disferlina/química , Disferlina/metabolismo , Lipídeos/química , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Proteínas Musculares/química , Proteínas Musculares/metabolismo , Ligação Proteica , Sarcolema/química
16.
J Phys Chem Lett ; 13(46): 10858-10862, 2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36383054

RESUMO

The adsorption of protein to nanoparticles plays an important role in toxicity, food science, pharmaceutics, and biomaterial science. Understanding how proteins bind to nanophase surfaces is instrumental for understanding and, ultimately, controlling nanoparticle (NP) biochemistry. Techniques probing the adsorption of proteins at NP interfaces exist; however, these methods have been unable to determine the orientation and folding of proteins at these interfaces. For the first time, we probe in situ with sum frequency scattering vibrational spectroscopy the orientation of model leucine-lysine (LK) peptides adsorbed to NPs. The results show that both α-helical and ß-strand LK peptides bind the particles in an upright orientation, in contrast to the flat orientation of LKs binding to planar surfaces. The different binding geometry is explained by Coulombic forces between peptides across the particle volume.


Assuntos
Peptídeos , Proteínas , Emulsões , Peptídeos/química , Adsorção , Análise Espectral/métodos
17.
Biomacromolecules ; 23(12): 5340-5349, 2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36437734

RESUMO

The mechanical properties of biomaterials are dictated by the interactions and conformations of their building blocks, typically proteins. Although the macroscopic behavior of biomaterials is widely studied, our understanding of the underlying molecular properties is generally limited. Among the noninvasive and label-free methods to investigate molecular structures, infrared spectroscopy is one of the most commonly used tools because the absorption bands of amide groups strongly depend on protein secondary structure. However, spectral congestion usually complicates the analysis of the amide spectrum. Here, we apply polarized two-dimensional (2D) infrared spectroscopy (IR) to directly identify the protein secondary structures in native silk films cast from Bombyx mori silk feedstock. Without any additional peak fitting, we find that the initial effect of hydration is an increase of the random coil content at the expense of the helical content, while the ß-sheet content is unchanged and only increases at a later stage. This paper demonstrates that 2D-IR can be a valuable tool for characterizing biomaterials.


Assuntos
Bombyx , Fibroínas , Animais , Seda/química , Bombyx/química , Fibroínas/química , Espectrofotometria Infravermelho , Materiais Biocompatíveis , Amidas , Espectroscopia de Infravermelho com Transformada de Fourier
18.
Molecules ; 27(19)2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36234809

RESUMO

We used two-dimensional infrared spectroscopy to disentangle the broad infrared band in the amide II vibrational regions of Bombyx mori native silk films, identifying the single amide II modes and correlating them to specific secondary structure. Amide I and amide II modes have a strong vibrational coupling, which manifests as cross-peaks in 2D infrared spectra with frequencies determined by both the amide I and amide II frequencies of the same secondary structure. By cross referencing with well-known amide I assignments, we determined that the amide II (N-H) absorbs at around 1552 and at 1530 cm-1 for helical and ß-sheet structures, respectively. We also observed a peak at 1517 cm-1 that could not be easily assigned to an amide II mode, and instead we tentatively assigned it to a Tyrosine sidechain. These results stand in contrast with previous findings from linear infrared spectroscopy, highlighting the ability of multidimensional spectroscopy for untangling convoluted spectra, and suggesting the need for caution when assigning silk amide II spectra.


Assuntos
Bombyx , Amidas/química , Animais , Seda , Espectrofotometria Infravermelho/métodos , Tirosina , Vibração
19.
J Phys Chem B ; 126(42): 8571-8578, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36194760

RESUMO

Vibrational sum frequency generation (vSFG) spectroscopy is widely used to probe the protein structure at interfaces. Because protein vSFG spectra are complex, they can only provide detailed structural information if combined with computer simulations of protein molecular dynamics and spectra calculations. We show how vSFG spectra can be accurately modeled using a surface-specific velocity-velocity scheme based on ab initio normal modes. Our calculated vSFG spectra show excellent agreement with the experimental sum frequency spectrum of LTα14 peptide and provide insight into the origin of the characteristic α-helical amide I peak. Analysis indicates that the peak shape can be explained largely by two effects: (1) the uncoupled response of amide groups located on opposite sides of the α-helix will have different orientations with respect to the interface and therefore different local environments affecting the local mode vibrations and (2) vibrational splitting from nearest neighbor coupling evaluated as inter-residue vibrational correlation. The conclusion is consistent with frequency mapping techniques with an empirically based ensemble of peptide structures, thus showing how time correlation approaches and frequency mapping techniques can give independent yet complementary molecular descriptions of protein vSFG. These models reveal the sensitive relationship between protein structure and their amide I response, allowing exploitation of the complicated molecular vibrations and their interference to derive the structures of proteins under native conditions at interfaces.


Assuntos
Amidas , Proteínas , Amidas/química , Proteínas/química , Análise Espectral , Peptídeos/química , Simulação de Dinâmica Molecular
20.
Phys Chem Chem Phys ; 24(40): 24695-24705, 2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36069146

RESUMO

We study the primary dissociation dynamics of aqueous formamide (HCONH2) and dimethylformamide (HCON(CH3)2) induced by photo-excitation at λ = 200 nm. The photolysis is recorded with sub-picosecond time resolution by UV pump-IR probe transient absorption spectroscopy. Formamide dissociates with a quantum yield of Φ(t = 20 ps) = 0.30 ± 0.05, t = 20 ps after the excitation. The rest of the excited formamide molecules return to the ground state within t = 1 ps and vibrationally relax towards equilibrium in t ≈ 10 ps. The only product observed is NH3. NH3 is produced with a yield of Φ(NH3) = 0.23 ± 0.10 on a timescale of τ = 3 ± 1 ps and likely constitutes the dominating product. The CO counter product to NH3 is not observed. Dimethylformamide is photolysed with a quantum yield of Φ(t = 30 ps) = 0.29 ± 0.05, t = 30 ps after the excitation. The photolysis of dimethylformamide produces CO on a time scale of τ ≈ 30 ps. The data indicate that dimethylamine and the N(CH3)2 radical are likely photoproducts.


Assuntos
Dimetilformamida , Água , Fotólise , Formamidas , Dimetilaminas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...