Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiome ; 12(1): 9, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38212738

RESUMO

BACKGROUND: Antarctica and its unique biodiversity are increasingly at risk from the effects of global climate change and other human influences. A significant recent element underpinning strategies for Antarctic conservation has been the development of a system of Antarctic Conservation Biogeographic Regions (ACBRs). The datasets supporting this classification are, however, dominated by eukaryotic taxa, with contributions from the bacterial domain restricted to Actinomycetota and Cyanobacteriota. Nevertheless, the ice-free areas of the Antarctic continent and the sub-Antarctic islands are dominated in terms of diversity by bacteria. Our study aims to generate a comprehensive phylogenetic dataset of Antarctic bacteria with wide geographical coverage on the continent and sub-Antarctic islands, to investigate whether bacterial diversity and distribution is reflected in the current ACBRs. RESULTS: Soil bacterial diversity and community composition did not fully conform with the ACBR classification. Although 19% of the variability was explained by this classification, the largest differences in bacterial community composition were between the broader continental and maritime Antarctic regions, where a degree of structural overlapping within continental and maritime bacterial communities was apparent, not fully reflecting the division into separate ACBRs. Strong divergence in soil bacterial community composition was also apparent between the Antarctic/sub-Antarctic islands and the Antarctic mainland. Bacterial communities were partially shaped by bioclimatic conditions, with 28% of dominant genera showing habitat preferences connected to at least one of the bioclimatic variables included in our analyses. These genera were also reported as indicator taxa for the ACBRs. CONCLUSIONS: Overall, our data indicate that the current ACBR subdivision of the Antarctic continent does not fully reflect bacterial distribution and diversity in Antarctica. We observed considerable overlap in the structure of soil bacterial communities within the maritime Antarctic region and within the continental Antarctic region. Our results also suggest that bacterial communities might be impacted by regional climatic and other environmental changes. The dataset developed in this study provides a comprehensive baseline that will provide a valuable tool for biodiversity conservation efforts on the continent. Further studies are clearly required, and we emphasize the need for more extensive campaigns to systematically sample and characterize Antarctic and sub-Antarctic soil microbial communities. Video Abstract.


Assuntos
Cianobactérias , Solo , Humanos , Regiões Antárticas , Filogenia , Biodiversidade , Microbiologia do Solo
2.
Microorganisms ; 11(12)2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38138128

RESUMO

The ability to sense and direct movement along chemical gradients is known as 'chemotaxis' and is a common trait among rhizosphere microorganisms, which are attracted to organic compounds released from plant roots. In response to stress, the compounds released from roots can change and may recruit symbionts that enhance host stress tolerance. Decoding this language of attraction could support the development of microbiome management strategies that would enhance agricultural production and sustainability. In this study, we employ a culture-independent bait-trap chemotaxis assay to capture microbial communities attracted to root exudates from phosphorus (P)-sufficient and P-deficient Arabidopsis thaliana Col-0 plants. The captured populations were then enumerated and characterised using flow cytometry and phylogenetic marker gene sequencing, respectively. Exudates attracted significantly more cells than the control but did not differ between P treatments. Relative to exudates from P-sufficient plants, those collected from P-deficient plants attracted a significantly less diverse bacterial community that was dominated by members of the Paenibacillus, which is a genus known to include powerful phosphate solubilisers and plant growth promoters. These results suggest that in response to P deficiency, Arabidopsis exudates attract organisms that could help to alleviate nutrient stress.

3.
Methods Mol Biol ; 2232: 283-289, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33161554

RESUMO

Here, we describe a novel "bait-trap" assay, which facilitates capture of soil microorganisms that exhibit chemotaxis to chemical attractants, such as root exudates. These multi-population assemblages represent potential guilds and can be characterized using a wide-range of culture-dependent and culture-independent methods. While in this example, we use root exudates as bait, any water-soluble compound(s) could be used. Hence, the potential applications for the assay are diverse.


Assuntos
Quimiotaxia/genética , Exsudatos de Plantas/metabolismo , Raízes de Plantas/microbiologia , Microbiologia do Solo , Raízes de Plantas/genética , Rizosfera , Solo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...