Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurosci ; 43(44): 7393-7428, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37734947

RESUMO

Larvae of the fruit fly Drosophila melanogaster are a powerful study case for understanding the neural circuits underlying behavior. Indeed, the numerical simplicity of the larval brain has permitted the reconstruction of its synaptic connectome, and genetic tools for manipulating single, identified neurons allow neural circuit function to be investigated with relative ease and precision. We focus on one of the most complex neurons in the brain of the larva (of either sex), the GABAergic anterior paired lateral neuron (APL). Using behavioral and connectomic analyses, optogenetics, Ca2+ imaging, and pharmacology, we study how APL affects associative olfactory memory. We first provide a detailed account of the structure, regional polarity, connectivity, and metamorphic development of APL, and further confirm that optogenetic activation of APL has an inhibiting effect on its main targets, the mushroom body Kenyon cells. All these findings are consistent with the previously identified function of APL in the sparsening of sensory representations. To our surprise, however, we found that optogenetically activating APL can also have a strong rewarding effect. Specifically, APL activation together with odor presentation establishes an odor-specific, appetitive, associative short-term memory, whereas naive olfactory behavior remains unaffected. An acute, systemic inhibition of dopamine synthesis as well as an ablation of the dopaminergic pPAM neurons impair reward learning through APL activation. Our findings provide a study case of complex circuit function in a numerically simple brain, and suggest a previously unrecognized capacity of central-brain GABAergic neurons to engage in dopaminergic reinforcement.SIGNIFICANCE STATEMENT The single, identified giant anterior paired lateral (APL) neuron is one of the most complex neurons in the insect brain. It is GABAergic and contributes to the sparsening of neuronal activity in the mushroom body, the memory center of insects. We provide the most detailed account yet of the structure of APL in larval Drosophila as a neurogenetically accessible study case. We further reveal that, contrary to expectations, the experimental activation of APL can exert a rewarding effect, likely via dopaminergic reward pathways. The present study both provides an example of unexpected circuit complexity in a numerically simple brain, and reports an unexpected effect of activity in central-brain GABAergic circuits.


Assuntos
Drosophila melanogaster , Drosophila , Animais , Drosophila/fisiologia , Larva/fisiologia , Encéfalo/fisiologia , Olfato/fisiologia , Neurônios GABAérgicos/fisiologia , Interneurônios , Dopamina , Recompensa , Corpos Pedunculados/fisiologia
2.
Neurobiol Stress ; 20: 100474, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35958670

RESUMO

Remembering the location of food is essential for survival. Rodents and humans employ mainly hippocampus-dependent spatial strategies, but when being stressed they shift to striatum-mediated stimulus-based strategies. To investigate underlying brain circuits, we tested mice with a heightened stress susceptibility due to a lack of the GABA-synthetizing enzyme GAD65 (GAD65-/- mice) in a dual solution task. Here, GAD65-/- mice preferred to locate a food reward in an open field via a proximal cue, while their wildtype littermates preferred a spatial strategy. The analysis of cFos co-activation across brain regions and of stress-induced mRNA expression changes of GAD65 pointed towards the hippocampal dorsal dentate gyrus (dDG) as a central structure for mediating stress effects on strategy choices via GAD65. Reducing the GAD65 expression locally in the dDG by a shRNA mediated knock down was sufficient to replicate the phenotype of the global GAD65 knock out and to increase dDG excitability. Using DREADD vectors to specifically interfere with dDG circuit activity during dual solution retrieval but not learning confirmed that the dDG modulates strategy choices and that a balanced excitability of this structure is necessary to establish spatial strategy preference. These data highlight the dDG as a critical hub for choosing between spatial and non-spatial foraging strategies.

3.
J Exp Biol ; 225(16)2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35924545

RESUMO

Animals, including humans, form oppositely valenced memories for stimuli that predict the occurrence versus the termination of a reward: appetitive 'reward' memory for stimuli associated with the occurrence of a reward and aversive 'frustration' memory for stimuli that are associated with its termination. We characterized these memories in larval Drosophila melanogaster using a combination of Pavlovian conditioning, optogenetic activation of the dopaminergic central-brain DAN-i1864 neuron, and high-resolution video-tracking. This reveals their dependency on the number of training trials and the duration of DAN-i1864 activation, their temporal stability, and the parameters of locomotion that are modulated during memory expression. Together with previous results on 'punishment' versus 'relief' learning by DAN-f1 neuron activation, this reveals a 2×2 matrix of timing-dependent memory valence for the occurrence/termination of reward/punishment. These findings should aid the understanding and modelling of how brains decipher the predictive, causal structure of events around a target reinforcing occurrence.


Assuntos
Drosophila melanogaster , Corpos Pedunculados , Animais , Neurônios Dopaminérgicos/fisiologia , Drosophila melanogaster/fisiologia , Humanos , Larva/fisiologia , Recompensa
4.
Int J Mol Sci ; 23(13)2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35806489

RESUMO

Inflammatory diseases of the skin, including atopic dermatitis and psoriasis, have gained increasing attention with rising incidences in developed countries over the past decades. While bodily properties, such as immunological responses of the skin, have been described in some detail, interactions with the brain via different routes are less well studied. The suggested routes of the skin-brain axis comprise the immune system, HPA axis, and the peripheral and central nervous system, including microglia responses and structural changes. They provide starting points to investigate the molecular mechanisms of neuropsychiatric comorbidities in AD and psoriasis. To this end, mouse models exist for AD and psoriasis that could be tested for relevant behavioral entities. In this review, we provide an overview of the current mouse models and assays. By combining an extensive behavioral characterization and state-of-the-art genetic interventions with the investigation of underlying molecular pathways, insights into the mechanisms of the skin-brain axis in inflammatory cutaneous diseases are examined, which will spark further research in humans and drive the development of novel therapeutic strategies.


Assuntos
Dermatite Atópica , Psoríase , Animais , Dermatite Atópica/tratamento farmacológico , Modelos Animais de Doenças , Sistema Hipotálamo-Hipofisário , Camundongos , Sistema Hipófise-Suprarrenal , Psoríase/tratamento farmacológico , Pele
5.
Biol Open ; 10(6)2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34106227

RESUMO

Across the animal kingdom, dopamine plays a crucial role in conferring reinforcement signals that teach animals about the causal structure of the world. In the fruit fly Drosophila melanogaster, dopaminergic reinforcement has largely been studied using genetics, whereas pharmacological approaches have received less attention. Here, we apply the dopamine-synthesis inhibitor 3-Iodo-L-tyrosine (3IY), which causes acute systemic inhibition of dopamine signaling, and investigate its effects on Pavlovian conditioning. We find that 3IY feeding impairs sugar-reward learning in larvae while leaving task-relevant behavioral faculties intact, and that additional feeding of a precursor of dopamine (L-3,4-dihydroxyphenylalanine, L-DOPA), rescues this impairment. Concerning a different developmental stage and for the aversive valence domain. Moreover, we demonstrate that punishment learning by activating the dopaminergic neuron PPL1-γ1pedc in adult flies is also impaired by 3IY feeding, and can likewise be rescued by L-DOPA. Our findings exemplify the advantages of using a pharmacological approach in combination with the genetic techniques available in D. melanogaster to manipulate neuronal and behavioral function.


Assuntos
Vias Biossintéticas/efeitos dos fármacos , Dopamina/biossíntese , Drosophila melanogaster/fisiologia , Aprendizagem/efeitos dos fármacos , Monoiodotirosina/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Larva , Monoiodotirosina/administração & dosagem
6.
J Neurogenet ; 35(3): 306-319, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33688796

RESUMO

Larval Drosophila are used as a genetically accessible study case in many areas of biological research. Here we report a fast, robust and user-friendly procedure for the whole-body multi-fluorescence imaging of Drosophila larvae; the protocol has been optimized specifically for larvae by systematically tackling the pitfalls associated with clearing this small but cuticularized organism. Tests on various fluorescent proteins reveal that the recently introduced monomeric infrared fluorescent protein (mIFP) is particularly suitable for our approach. This approach comprises an effective, low-cost clearing protocol with minimal handling time and reduced toxicity in the reagents employed. It combines a success rate high enough to allow for small-scale screening approaches and a resolution sufficient for cellular-level analyses with light sheet and confocal microscopy. Given that publications and database documentations typically specify expression patterns of transgenic driver lines only within a given organ system of interest, the present procedure should be versatile enough to extend such documentation systematically to the whole body. As examples, the expression patterns of transgenic driver lines covering the majority of neurons, or subsets of chemosensory, central brain or motor neurons, are documented in the context of whole larval body volumes (using nsyb-Gal4, IR76b-Gal4, APL-Gal4 and mushroom body Kenyon cells, or OK371-Gal4, respectively). Notably, the presented protocol allows for triple-color fluorescence imaging with near-infrared, red and yellow fluorescent proteins.


Assuntos
Animais Geneticamente Modificados , Imageamento Tridimensional/métodos , Imagem Óptica/métodos , Animais , Drosophila , Proteínas de Fluorescência Verde , Larva , Microscopia Confocal/métodos , Transgenes
7.
J Comp Neurol ; 529(7): 1553-1570, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32965036

RESUMO

Dopamine serves many functions, and dopamine neurons are correspondingly diverse. We use a combination of optogenetics, behavioral experiments, and high-resolution video-tracking to probe for the functional capacities of two single, identified dopamine neurons in larval Drosophila. The DAN-f1 and the DAN-d1 neuron were recently found to carry aversive teaching signals during Pavlovian olfactory learning. We enquire into a fundamental feature of these teaching signals, namely their temporal "fingerprint". That is, receiving punishment feels bad, whereas being relieved from it feels good, and animals and humans alike learn with opposite valence about the occurrence and the termination of punishment (the same principle applies in the appetitive domain, with opposite sign). We find that DAN-f1 but not DAN-d1 can mediate such timing-dependent valence reversal: presenting an odor before DAN-f1 activation leads to learned avoidance of the odor (punishment memory), whereas presenting the odor upon termination of DAN-f1 activation leads to learned approach (relief memory). In contrast, DAN-d1 confers punishment memory only. These effects are further characterized in terms of the impact of the duration of optogenetic activation, the temporal stability of the memories thus established, and the specific microbehavioral patterns of locomotion through which they are expressed. Together with recent findings in the appetitive domain and from adult Drosophila, our results suggest that heterogeneity in the temporal fingerprint of teaching signals might be a more general principle of reinforcement processing through dopamine neurons.


Assuntos
Aprendizagem por Associação/fisiologia , Aprendizagem da Esquiva/fisiologia , Neurônios Dopaminérgicos/fisiologia , Reforço Psicológico , Animais , Comportamento Animal/fisiologia , Condicionamento Clássico , Drosophila melanogaster , Larva
8.
J Exp Biol ; 223(Pt 16)2020 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-32848044

RESUMO

Preparations of Rhodiola rosea root are widely used in traditional medicine. They can increase life span in worms and flies, and have various effects related to nervous system function in different animal species and humans. However, which of the compounds in R. rosea is mediating any one of these effects has remained unknown in most cases. Here, an analysis of the volatile and non-volatile low-molecular-weight constituents of R. rosea root samples was accompanied by an investigation of their behavioral impact on Drosophila melanogaster larvae. Rhodiola rosea root samples have an attractive smell and taste to the larvae, and exert a rewarding effect. This rewarding effect was also observed for R. rosea root extracts, and did not require activity of dopamine neurons that mediate known rewards such as sugar. Based on the chemical profiles of R. rosea root extracts and resultant fractions, a bioactivity-correlation analysis (AcorA) was performed to identify candidate rewarding compounds. This suggested positive correlations for - among related compounds - ferulic acid eicosyl ester (FAE-20) and ß-sitosterol glucoside. A validation using these as pure compounds confirmed that the correlations were causal. Their rewarding effects can be observed even at low micromolar concentrations and thus at remarkably lower doses than for any known taste reward in the larva. We discuss whether similar rewarding effects, should they be observed in humans, would indicate a habit-forming or addictive potential.


Assuntos
Plantas Medicinais , Rhodiola , Animais , Drosophila melanogaster , Extratos Vegetais/farmacologia , Recompensa
9.
J Neurosci ; 40(31): 5990-6006, 2020 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-32586949

RESUMO

An adaptive transition from exploring the environment in search of vital resources to exploiting these resources once the search was successful is important to all animals. Here we study the neuronal circuitry that allows larval Drosophila melanogaster of either sex to negotiate this exploration-exploitation transition. We do so by combining Pavlovian conditioning with high-resolution behavioral tracking, optogenetic manipulation of individually identified neurons, and EM data-based analyses of synaptic organization. We find that optogenetic activation of the dopaminergic neuron DAN-i1 can both establish memory during training and acutely terminate learned search behavior in a subsequent recall test. Its activation leaves innate behavior unaffected, however. Specifically, DAN-i1 activation can establish associative memories of opposite valence after paired and unpaired training with odor, and its activation during the recall test can terminate the search behavior resulting from either of these memories. Our results further suggest that in its behavioral significance DAN-i1 activation resembles, but does not equal, sugar reward. Dendrogram analyses of all the synaptic connections between DAN-i1 and its two main targets, the Kenyon cells and the mushroom body output neuron MBON-i1, further suggest that the DAN-i1 signals during training and during the recall test could be delivered to the Kenyon cells and to MBON-i1, respectively, within previously unrecognized, locally confined branching structures. This would provide an elegant circuit motif to terminate search on its successful completion.SIGNIFICANCE STATEMENT In the struggle for survival, animals have to explore their environment in search of food. Once food is found, however, it is adaptive to prioritize exploiting it over continuing a search that would now be as pointless as searching for the glasses you are wearing. This exploration-exploitation trade-off is important for animals and humans, as well as for technical search devices. We investigate which of the only 10,000 neurons of a fruit fly larva can tip the balance in this trade-off, and identify a single dopamine neuron called DAN-i1 that can do so. Given the similarities in dopamine neuron function across the animal kingdom, this may reflect a general principle of how search is terminated once it is successful.


Assuntos
Aprendizagem por Associação/fisiologia , Comportamento Animal/fisiologia , Neurônios Dopaminérgicos/fisiologia , Memória/fisiologia , Animais , Condicionamento Clássico , Drosophila melanogaster , Feminino , Masculino , Rememoração Mental/fisiologia , Corpos Pedunculados/fisiologia , Optogenética , Desempenho Psicomotor/fisiologia , Olfato/fisiologia , Sinapses/fisiologia
10.
J Exp Biol ; 222(Pt 23)2019 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-31672727

RESUMO

Amino acids are important nutrients for animals because they are necessary for protein synthesis in particular during growth, as well as for neurotransmission. However, little is known about how animals use past experience to guide their search for amino-acid-rich food. We reasoned that the larvae of Drosophila melanogaster are suitable for investigating this topic because they are the feeding and growth stages in the life cycle of these holometabolous insects. Specifically, we investigated whether experiencing an odour with a 20 amino-acid mixture as a semi-natural tastant during training establishes odour-tastant associative memories. Across a broad concentration range (0.01-20 mmol l-1), such an amino-acid mixture was found to have a rewarding effect, establishing appetitive memory for the odour. To our surprise, however, manipulation of the test conditions revealed that relatively high concentrations of the amino-acid mixture (3.3 mmol l-1 and higher) in addition establish aversive memory for the odour. We then characterized both of these oppositely valenced memories in terms of their dependency on the number of training trials, their temporal stability, their modulation through starvation and the specific changes in locomotion underlying them. Collectively, and in the light of what is known about the neuronal organization of odour-food memory in larval D. melanogaster, our data suggest that these memories are established in parallel. We discuss the similarity of our results to what has been reported for sodium chloride, and the possible neurogenetic bases for concentration-dependent changes in valence when these tastants are used as reinforcers.


Assuntos
Aminoácidos/metabolismo , Drosophila melanogaster/fisiologia , Odorantes/análise , Animais , Aprendizagem por Associação , Drosophila melanogaster/crescimento & desenvolvimento , Larva/crescimento & desenvolvimento , Larva/fisiologia , Punição , Recompensa
11.
Learn Mem ; 26(11): 424-435, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31615854

RESUMO

Adjusting behavior to changed environmental contingencies is critical for survival, and reversal learning provides an experimental handle on such cognitive flexibility. Here, we investigate reversal learning in larval Drosophila Using odor-taste associations, we establish olfactory reversal learning in the appetitive and the aversive domain, using either fructose as a reward or high-concentration sodium chloride as a punishment, respectively. Reversal learning is demonstrated both in differential and in absolute conditioning, in either valence domain. In differential conditioning, the animals are first trained such that an odor A is paired, for example, with the reward whereas odor B is not (A+/B); this is followed by a second training phase with reversed contingencies (A/B+). In absolute conditioning, odor B is omitted, such that the animals are first trained with paired presentations of A and reward, followed by unpaired training in the second training phase. Our results reveal "true" reversal learning in that the opposite associative effects of both the first and the second training phase are detectable after reversed-contingency training. In what is a surprisingly quick, one-trial contingency adjustment in the Drosophila larva, the present study establishes a simple and genetically easy accessible study case of cognitive flexibility.


Assuntos
Aprendizagem por Associação/fisiologia , Comportamento Animal/fisiologia , Condicionamento Psicológico/fisiologia , Drosophila/fisiologia , Larva/fisiologia , Reversão de Aprendizagem/fisiologia , Animais , Comportamento Apetitivo/fisiologia , Aprendizagem da Esquiva/fisiologia , Percepção Olfatória/fisiologia , Recompensa , Percepção Gustatória/fisiologia
12.
Learn Mem ; 26(4): 109-120, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30898973

RESUMO

Animals of many species are capable of "small data" learning, that is, of learning without repetition. Here we introduce larval Drosophila melanogaster as a relatively simple study case for such one-trial learning. Using odor-food associative conditioning, we first show that a sugar that is both sweet and nutritious (fructose) and sugars that are only sweet (arabinose) or only nutritious (sorbitol) all support appetitive one-trial learning. The same is the case for the optogenetic activation of a subset of dopaminergic neurons innervating the mushroom body, the memory center of the insects. In contrast, no one-trial learning is observed for an amino acid reward (aspartic acid). As regards the aversive domain, one-trial learning is demonstrated for high-concentration sodium chloride, but is not observed for a bitter tastant (quinine). Second, we provide follow-up, parametric analyses of odor-fructose learning. Specifically, we ascertain its dependency on the number and duration of training trials, the requirements for the behavioral expression of one-trial odor-fructose memory, its temporal stability, and the feasibility of one-trial differential conditioning. Our results set the stage for a neurogenetic analysis of one-trial learning and define the requirements for modeling mnemonic processes in the larva.


Assuntos
Aprendizagem por Associação/fisiologia , Memória/fisiologia , Corpos Pedunculados/fisiologia , Neurônios/fisiologia , 1-Octanol/administração & dosagem , Animais , Ácido Aspártico/administração & dosagem , Drosophila melanogaster , Larva , Odorantes , Optogenética , Punição , Quinina/administração & dosagem , Recompensa , Cloreto de Sódio/administração & dosagem , Açúcares/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...