Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Appl Genet ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38954397

RESUMO

Europe is highly dependent on soybean meal imports and anticipates an increase of domestic plant protein production. Ongoing climate change resulted in northward shift of plant hardiness zones, enabling spring-sowing of freezing-sensitive crops, including soybean. However, it requires efficient reselection of germplasm adapted to relatively short growing season and long-day photoperiod. In the present study, a PCR array has been implemented, targeting early maturity (E1-E4, E7, E9, and E10), pod shattering (qPHD1), and growth determination (Dt1) genes. This array was optimized for routine screening of soybean diversity panel (204 accessions), subjected to the 2018-2020 survey of phenology, morphology, and yield-related traits in a potential cultivation region in Poland. High broad-sense heritability (0.84-0.88) was observed for plant height, thousand grain weight, maturity date, and the first pod height. Significant positive correlations were identified between the number of seeds and pods per plant, between these two traits and seed yield per plant as well as between flowering, maturity, plant height, and first pod height. PCR array genotyping revealed high genetic diversity, yielding 98 allelic combinations. The most remarkable correlations were identified between flowering and E7 or E1, between maturity and E4 or E7 and between plant height and Dt1 or E4. The study demonstrated high applicability of this PCR array for molecular selection of soybean towards adaptation to Central Europe, designating recessive qPHD1 and dominant Dt1, E3, and E4 alleles as major targets to align soybean growth season requirements with the length of the frost-free period, improve plant performance, and increase yield.

2.
Plants (Basel) ; 13(3)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38337896

RESUMO

Among various methods stimulating biological progress, double haploid (DH) technology, which utilizes the process of microspore embryogenesis (ME), is potentially the most effective. However, the process depends on complex interactions between many genetic, physiological and environmental variables, and in many cases, e.g., winter wheat, does not operate with the efficiency required for commercial use. Stress associated with low-temperature treatment, isolation and transfer to in vitro culture has been shown to disturb redox homeostasis and generate relatively high levels of reactive oxygen species (ROS), affecting microspore vitality. The aim of this study was to investigate whether controlled plant growth, specific tiller pre-treatment and culture conditions could improve the potential of microspores to cope with stress and effectively induce ME. To understand the mechanism of the stress response, hydrogen peroxide levels, total activity and the content of the most important low-molecular-weight antioxidants (glutathione and ascorbate), as well as the content of selected macro- (Mg, Ca, NA, K) and micronutrients (Mn, Zn, Fe, Cu, Mo) were determined. These analyses, combined with the cytological characteristics of the microspore suspensions, allowed us to demonstrate that an increased microspore vitality and stronger response to ME induction were associated with higher stress resistance based on more efficient ROS scavenging and nutrient management. It was shown that a modified procedure, combining a low temperature with mannitol and sodium selenate tiller pre-treatment, reduced oxidative stress and improved the effectiveness of ME in winter wheat lines.

3.
Curr Issues Mol Biol ; 45(5): 4431-4450, 2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37232751

RESUMO

Rapeseed is one of the most important oil crops in the world. Increasing demand for oil and limited agronomic capabilities of present-day rapeseed result in the need for rapid development of new, superior cultivars. Double haploid (DH) technology is a fast and convenient approach in plant breeding as well as genetic research. Brassica napus is considered a model species for DH production based on microspore embryogenesis; however, the molecular mechanisms underlying microspore reprogramming are still vague. It is known that morphological changes are accompanied by gene and protein expression patterns, alongside carbohydrate and lipid metabolism. Novel, more efficient methods for DH rapeseed production have been reported. This review covers new findings and advances in Brassica napus DH production as well as the latest reports related to agronomically important traits in molecular studies employing the double haploid rapeseed lines.

4.
Curr Issues Mol Biol ; 44(9): 4290-4302, 2022 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-36135207

RESUMO

Brassica napus is an important oil source. Its narrow gene pool can be widened by interspecific hybridization with the Brassicaceae species. One of the agronomically important traits, that can be transferred through the hybridization, is the resistance to blackleg, a dangerous disease mainly caused by Leptosphaeria maculans. Hybrid individuals can be analyzed with various molecular markers, including Simple Sequence Repeats (SSR). We investigated the genetic similarity of 32 Brassicaceae hybrids and 19 parental components using SSR markers to reveal their genetic relationship. Furthermore, we compared the field resistance to blackleg of the interspecific progenies. The tested set of 15 SSR markers proved to be useful in revealing the genetic distances in the Brassicaceae hybrids and species. However, genetic similarity of the studied hybrids could not be correlated with the level of field resistance to L. maculans. Moreover, our studies confirmed the usefulness of the Brassicaceae hybrids in terms of blackleg management.

5.
Genes (Basel) ; 12(5)2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-34068721

RESUMO

Wild barley is abundant, occupying large diversity of sites, ranging from the northern mesic Mediterranean meadows to the southern xeric deserts in Israel. This is also reflected in its wide phenotypic heterogeneity. We investigated the dynamics of DNA content changes in seed tissues in ten wild barley accessions that originated from an environmental gradient in Israel. The flow cytometric measurements were done from the time shortly after pollination up to the dry seeds. We show variation in mitotic cell cycle and endoreduplication dynamics in both diploid seed tissues (represented by seed maternal tissues and embryo) and in the triploid endosperm. We found that wild barley accessions collected at harsher xeric environmental conditions produce higher proportion of endoreduplicated nuclei in endosperm tissues. Also, a comparison of wild and cultivated barley strains revealed a higher endopolyploidy level in the endosperm of wild barley, that is accompanied by temporal changes in the timing of the major developmental phases. In summary, we present a new direction of research focusing on connecting spatiotemporal patterns of endoreduplication in barley seeds and possibly buffering for stress conditions.


Assuntos
Endosperma/genética , Variação Genética/genética , Hordeum/genética , Sementes/genética , DNA de Plantas/genética , Genética Populacional/métodos , Israel , Poliploidia
6.
Open Life Sci ; 16(1): 172-183, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33817309

RESUMO

Leaf rust caused by the fungus Puccinia recondita f. sp. tritici is one of the most dangerous diseases of common wheat. Infections caused by fungal pathogens reduce the quantity and quality of yields of many cereal species. The most effective method to limit plant infection is to use cultivars that show rust resistance. Genetically conditioned horizontal-type resistance (racial-nonspecific) is a desirable trait because it is characterized by more stable expression compared to major (R) genes that induce racially specific resistance, often overcome by pathogens. Horizontal resistance is conditioned by the presence of slow rust genes, which include genes Lr34 and Lr46. This study aimed to identify markers linked to both genes in 64 common wheat lines and to develop multiplex PCR reaction conditions that were applied to identify both genes simultaneously. The degree of infestation of the analyzed lines was also assessed in field conditions during the growing season of 2017 and 2018. Simple sequence repeat anchored-polymerase chain reaction (SSR-PCR) marker csLV was identified during analysis in line PHR 4947. The presence of a specific sequence has also been confirmed in multiplex PCR analyses. In addition to gene Lr34, gene Lr46 was identified in this genotype. Lines PHR 4947 and PHR 4819 were characterized by the highest leaf rust resistance in field conditions. During STS-PCR analyses, the marker wmc44 of gene Lr46 was identified in most of the analyzed lines. This marker was not present in the following genotypes: PHR 4670, PHR 4800, PHR 4859, PHR 4907, PHR 4922, PHR 4949, PHR 4957, PHR 4995, and PHR 4997. The presence of a specific sequence has also been confirmed in multiplex PCR analyses. Genotypes carrying the markers of the analyzed gene showed good resistance to leaf rust in field conditions in both 2017 and 2018. Research has demonstrated that marker assisted selection (MAS) and multiplex PCR techniques are excellent tools for selecting genotypes resistant to leaf rust.

7.
J Exp Bot ; 72(2): 268-282, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33005935

RESUMO

Seeds are complex biological systems comprising three genetically distinct tissues: embryo, endosperm, and maternal tissues (including seed coats and pericarp) nested inside one another. Cereal grains represent a special type of seeds, with the largest part formed by the endosperm, a specialized triploid tissue ensuring embryo protection and nourishment. We investigated dynamic changes in DNA content in three of the major seed tissues from the time of pollination up to the dry seed. We show that the cell cycle is under strict developmental control in different seed compartments. After an initial wave of active cell division, cells switch to endocycle and most endoreduplication events are observed in the endosperm and seed maternal tissues. Using different barley cultivars, we show that there is natural variation in the kinetics of this process. During the terminal stages of seed development, specific and selective loss of endoreduplicated nuclei occurs in the endosperm. This is accompanied by reduced stability of the nuclear genome, progressive loss of cell viability, and finally programmed cell death. In summary, our study shows that endopolyploidization and cell death are linked phenomena that frame barley grain development.


Assuntos
Hordeum , Ciclo Celular , Endorreduplicação , Endosperma/genética , Hordeum/genética , Sementes/genética
8.
Open Life Sci ; 15(1): 711-720, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33817259

RESUMO

Rapeseed (Brassica napus) can be attacked by a wide range of pests, for example, cabbage root fly (Delia radicum) and cabbage aphid (Brevicoryne brassicae). One of the best methods of pest management is breeding for insect resistance in rapeseed. Wild genotypes of Brassicaceae and rapeseed cultivars can be used as a source of resistance. In 2017, 2018, and 2019, field trials were performed to assess the level of resistance to D. radicum and B. brassicae within 53 registered rapeseed cultivars and 31 interspecific hybrid combinations originating from the resources of the Department of Genetics and Plant Breeding of Poznan University of Life Sciences (PULS). The level of resistance varied among genotypes and years. Only one hybrid combination and two B. napus cultivars maintained high level of resistance in all tested years, i.e., B. napus cv. Jet Neuf × B. carinata - PI 649096, Galileus, and Markolo. The results of this research indicate that resistance to insects is present in Brassicaceae family and can be transferred to rapeseed cultivars. The importance of continuous improvement of rapeseed pest resistance and the search for new sources of resistance is discussed; furthermore, plans for future investigations are presented.

9.
Plants (Basel) ; 8(11)2019 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-31717618

RESUMO

The purpose of this work was to assess the impact of zearalenone (ZEN) and selected hormone regulators on the effectiveness of microspore embryogenesis in anther culture of wheat. The plant material comprised F1 hybrids of winter and spring wheat. Six combinations of media inducing microspore proliferation and formation of embryogenic structures were investigated: two combinations of growth regulators (D - 2,4-D + dicamba, K - 2,4-D + kinetin), each with three ZEN concentrations (0 mL/L, 0.1 mL/L, 0.2 mL/L). A significant increase in microspore embryogenesis effectiveness on media with the addition of ZEN was observed both at the stages of its induction and the formation of green plants in some genotypes. In case of both combinations of growth regulators, an increased concentration of ZEN resulted in more effective induction of microspore embryogenesis. The most effective induction medium was the D medium supplemented with 0.2 mL/L ZEN. As a result of the use of zearalenone together with two combinations of growth regulators, all genotypes tested produced androgenic structures, which indicates the breakdown of genotypic recalcitrant in the analysed hybrids. In addition, green plants were obtained from 18 out of 19 tested hybrids. The addition of ZEN to the medium did not affect the number of regenerated albino plants nor the number of spontaneous genome doublings proportion.

10.
Comp Cytogenet ; 13(1): 41-59, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30854169

RESUMO

There are many reports describing chromosome structure, organization and evolution within goatgrasses (Aegilops spp.). Chromosome banding and fluorescence in situ hybridization techniques are main methods used to identify Aegilops Linnaeus, 1753 chromosomes. These data have essential value considering the close genetic and genomic relationship of goatgrasses with wheat (Triticumaestivum Linnaeus, 1753) and triticale (× Triticosecale Wittmack, 1899). A key question is whether those protocols are useful and effective for tracking Aegilops chromosomes or chromosome segments in genetic background of cultivated cereals. This article is a review of scientific reports describing chromosome identification methods, which were applied for development of prebreeding plant material and for transfer of desirable traits into Triticum Linnaeus, 1753 cultivated species. Moreover, this paper is a resume of the most efficient cytomolecular markers, which can be used to follow the introgression of Aegilops chromatin during the breeding process.

11.
Plants (Basel) ; 9(1)2019 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-31906148

RESUMO

Androgenesis is potentially the most effective technique for doubled haploid production of wheat. It is not however widely used in breeding programmes due to its main limitation: the genotype dependence. Due to genetic differences between spring and winter wheat, it was assumed that both phenotypes are different in their capacity to conduct androgenesis. And so, the aim of this investigation was to verify the effectiveness of androgenesis induction and plant regeneration of spring and winter wheat genotypes while considering varying amounts of growth hormones in the induction medium. Fifteen genotypes of spring wheat and fifteen of winter wheat were used in the experiment. Six hundred anthers of each of the 30 genotypes were plated and analysed. Previous studies have allowed selection of the best medium for wheat androgenesis and a combination of growth hormones that are the most effective in stimulating microspore proliferation. Therefore, C17 induction media with two combinations of growth hormones were used: I-supplemented only by auxins (2,4-D and dicamba), and II-supplemented by auxin and cytokinin (2,4-D and kinetin). Data was recorded according to the efficiency of androgenic structure formation (ASF), green plant regeneration (GPR), and albino plant regeneration (APR). The results showed that the induction and regeneration of androgenesis in the spring wheat were more efficient than in the winter ones. The spring genotypes formed more androgenic structures and green plants on anthers plated on the medium supplemented only by auxins, in contrast to the winter genotypes which were better induced and regenerated on the medium supplemented by auxin and cytokinin. The study showed that to increase the efficiency of androgenesis, it is necessary to select appropriate factors such as concentration and type of hormones in medium composition, affecting the course of the culturing procedure according to the winter or spring phenotype of donor plants.

12.
In Vitro Cell Dev Biol Plant ; 52(6): 619-625, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28042231

RESUMO

Solid-stemmed spring wheat cultivars (Triticum aestivum L.) are resistant to the stem sawfly (Cephus cinctus Nort.) and lodging. Anthers of 24 spring wheat cultivars with varying content of pith in the stem were used in the experiment. All were classified into three groups: solid, medium-solid and hollow stems. There was considerable influence of the cultivar on callus formation and green plant regeneration. The highest efficiency of green plant regeneration (24%) was observed for the solid-stemmed AC Abbey cultivar. There was no regeneration from the explants of four cultivars: CLTR 7027, Alentejano, Marquis and Bombona. Principal component analysis showed no differences between the cases under observation (callus induction and green plant regeneration) in their response to pre-treatment temperatures (4 and 8°C). The examination of the effects of various auxin types in the induction medium on callus formation and green plant regeneration revealed that the strongest stimulation of these processes was observed in the C17 medium with 2,4-D and dicamba. The efficiency of callus formation and green plant regeneration was greater in solid-stemmed cultivars than in hollow-stemmed cultivars.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...