Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 15(1): 113-123, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38131074

RESUMO

Complexes of lanthanide(iii) ions (Ln) with tetraazacyclododecane-N,N',N'',N'''-tetraacetate (DOTA) are a benchmark in the field of magnetism due to their well-investigated and sometimes surprising features. Ab initio calculations suggest that the ninth ligand, an axial water molecule, is key in defining the magnetic properties because it breaks the potential C4 symmetry of the resulting complexes. In this paper, we experimentally isolate the role of the water molecule by excluding it from the metal coordination sphere without altering the chemical structure of the ligand. Our complexes are therefore designed to be geometrically tetragonal and strict crystallographic symmetry is achieved by exploiting a combination of solution ionic strength and solid state packing effects. A thorough multitechnique approach has been used to unravel the electronic structure and magnetic anisotropy of the complexes. Moreover, the geometry enhancement allows us to predict, using only one angle obtained from the crystal structure, the ground state composition of all the studied derivatives (Ln = Tb to Yb). Therefore, these systems also provide an excellent platform to test the validity and limitations of the ab initio methods. Our combined experimental and theoretical investigation proves that the water molecule is indeed key in defining the magnetic anisotropy and the slow relaxation of these complexes.

2.
Chem Sci ; 14(2): 266-276, 2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36687355

RESUMO

Record-breaking magnetic exchange interactions have previously been reported for 3d-metal dimers of the form [M(Pt(SAc)4)(pyNO2)]2 (M = Ni or Co) that are linked in the solid state via metallophilic Pt⋯Pt bridges. This contrasts the terminally capped monomers [M(Pt(SAc)4)(py)2], for which neither metallophilic bridges nor magnetic exchange interactions are found. Computational modeling has shown that the magnetic exchange interaction is facilitated by the pseudo-closed shell d8⋯d8 metallophilic interaction between the filled Pt2+ 5d z 2 orbitals. We present here inelastic neutron scattering experiments on these complexes, wherein the dimers present an oscillatory momentum-transfer-dependence of the magnetic transitions. This allows for the unequivocal experimental assignment of the distance between the coupled ions, which matches exactly the coupling pathway via the metallophilic bridges. Furthermore, we have synthesized and magnetically characterized the isostructural palladium-analogues. The magnetic coupling across the Pd⋯Pd bridge is found through SQUID-magnetometry and FD-FT THz-EPR spectroscopy to be much weaker than via the Pt⋯Pt bridge. The weaker coupling is traced to the larger radial extent of the 5d z 2 orbitals compared to that of the 4d z 2 orbitals. The existence of a palladium metallophilic interaction is evaluated computationally from potential surface cuts along the metal stretching direction. Similar behavior is found for the Pd⋯Pd and Pt⋯Pt-systems with clear minima along this coordinate and provide estimates for the force constant for this distortion. The estimated M⋯M stretching frequencies are found to match experimental observed, polarized bands in single-crystal Raman spectra close to 45 cm-1. This substantiates the existence of energetically relevant Pd⋯Pd metallophilic interactions. The unique properties of both Pt2+ and Pd2+ constitutes an orthogonal reactivity, which can be utilized for steering both the direction and strength of magnetic interactions.

3.
J Am Chem Soc ; 145(5): 2877-2883, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36695706

RESUMO

We demonstrate by use of continuous wave- and pulse-electron paramagnetic resonance spectroscopy on oriented single crystals of magnetically dilute YbIII ions in Yb0.01Lu0.99(trensal) that molecular entangled two-qubit systems can be constructed by exploiting dipolar interactions between neighboring YbIII centers. Furthermore, we show that the phase memory time and Rabi frequencies of these dipolar-interaction-coupled entangled two-qubit systems are comparable to the ones of the corresponding single qubits.

4.
J Am Chem Soc ; 144(38): 17597-17603, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36106369

RESUMO

Multifrequency electron paramagnetic resonance spectroscopy on oriented single crystals of magnetically dilute Gd(III) ions in Gd0.004Y0.996(trensal) is used to determine the Hamiltonian parameters of the ground 8S7/2 term and its phase memory time, Tm, characterizing its coherent spin dynamics. The vanishing orbital angular momentum of the 8S7/2 term makes it relatively insensitive to spin-lattice relaxation mediated by magnetoelastic coupling and leads to a Tm of 12 µs at 3 K, which is not limited by spin-lattice relaxation.

5.
Chem Commun (Camb) ; 58(53): 7431-7434, 2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35698976

RESUMO

High-resolution inelastic neutron scattering has been used to study low-energy magnetic transitions in a Ho3+ complex. This complex crystallises in the high-symmetry space group P4/m and has near-perfect D4d symmetry, which has allowed for the determination of all relevant spin-Hamiltonian parameters. Static and dynamic inhomogeneity in the crystal lattice manifests as a temperature-dependent broadening of the observed magnetic excitations. By implementing distributions in the spin-Hamiltonian parameters, it is possible to reproduce with great accuracy the observed magnetic transition spectrum. This reveals the range to which extraneous perturbations of the crystal field affect low-energy electronic states, such as those involved in quantum tunnelling of magnetisation, in atomic clock transitions, or in spintronics.

6.
Molecules ; 26(3)2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33540541

RESUMO

Three new heterometallic [CrIII8NiII6] coordination cubes of formulae [CrIII8NiII6L24(H2O)12](NO3)12 (1), [CrIII8NiII6L24(MeCN)7(H2O)5](ClO4)12 (2), and [CrIII8NiII6L24Cl12] (3) (where HL = 1-(4-pyridyl)butane-1,3-dione), were synthesised using the paramagnetic metalloligand [CrIIIL3] and the corresponding NiII salt. The magnetic skeleton of each capsule describes a face-centred cube in which the eight CrIII and six NiII ions occupy the eight vertices and six faces of the structure, respectively. Direct current magnetic susceptibility measurements on (1) reveal weak ferromagnetic interactions between the CrIII and NiII ions, with JCr-Ni = + 0.045 cm-1. EPR spectra are consistent with weak exchange, being dominated by the zero-field splitting of the CrIII ions. Excluding wheel-like structures, examples of large heterometallic clusters containing both CrIII and NiII ions are rather rare, and we demonstrate that the use of metalloligands with predictable bonding modes allows for a modular approach to building families of related polymetallic complexes. Compounds (1)-(3) join the previously published, structurally related family of [MIII8MII6] cubes, where MIII = Cr, Fe and MII = Cu, Co, Mn, Pd.


Assuntos
Cromo/química , Complexos de Coordenação/química , Níquel/química , Fenômenos Magnéticos , Modelos Moleculares , Conformação Molecular
7.
Inorg Chem ; 59(1): 235-243, 2020 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-31825607

RESUMO

In this paper, we experimentally study and model the electron donating character of an axial diamagnetic Pd2+ ion in four metalloligated lanthanide complexes of formula [PPh4][Ln{Pd(SAc)4}2] (SAc- = thioacetate, Ln = Tb, Dy, Ho, and Er). A global model encompassing inelastic neutron scattering, torque magnetometry, and dc magnetometry allows to precisely determine the energy level structure of the complexes. Solid state nuclear magnetic resonance reveals a less donating character of Pd2+ compared to the previously reported isostructural Pt2+-based complexes. Consequently, all complexes invariably show a lower crystal field strength compared to their Pt2+-analogues. The dynamic properties show an enhanced single molecule magnet behavior due to the suppression of quantum tunneling, in agreement with our model.

8.
Chemistry ; 26(2): 454-463, 2020 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-31603264

RESUMO

Lytic polysaccharide monooxygenases (LPMOs) are copper-containing enzymes capable of oxidizing crystalline cellulose which have large practical application in the process of refining biomass. The catalytic mechanism of LPMOs still remains debated despite several proposed reaction mechanisms. Here, we report a long-lived intermediate (t1/2 =6-8 minutes) observed in an LPMO from Thermoascus aurantiacus (TaLPMO9A). The intermediate with a strong absorption around 420 nm is formed when reduced LPMO-CuI reacts with sub-equimolar amounts of H2 O2 . UV/Vis absorption spectroscopy, electron paramagnetic resonance, resonance Raman and stopped-flow spectroscopy suggest that the observed long-lived intermediate involves the copper center and a nearby tyrosine (Tyr175). Additionally, activity assays in the presence of sub-equimolar amounts of H2 O2 showed an increase in the LPMO oxidation of phosphoric acid swollen cellulose. Accordingly, this suggests that the long-lived copper-dependent intermediate could be part of the catalytic mechanism for LPMOs. The observed intermediate offers a new perspective into the oxidative reaction mechanism of TaLPMO9A and hence for the biomass oxidation and the reactivity of copper in biological systems.


Assuntos
Cobre/química , Oxigenases de Função Mista/metabolismo , Biocatálise , Espectroscopia de Ressonância de Spin Eletrônica , Peróxido de Hidrogênio/química , Cinética , Oxigenases de Função Mista/química , Oxirredução , Thermoascus/enzimologia
9.
Nat Commun ; 9(1): 1292, 2018 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-29599433

RESUMO

Total control over the electronic spin relaxation in molecular nanomagnets is the ultimate goal in the design of new molecules with evermore realizable applications in spin-based devices. For single-ion lanthanide systems, with strong spin-orbit coupling, the potential applications are linked to the energetic structure of the crystal field levels and quantum tunneling within the ground state. Structural engineering of the timescale of these tunneling events via appropriate design of crystal fields represents a fundamental challenge for the synthetic chemist, since tunnel splittings are expected to be suppressed by crystal field environments with sufficiently high-order symmetry. Here, we report the long missing study of the effect of a non-linear (C4) to pseudo-linear (D4d) change in crystal field symmetry in an otherwise chemically unaltered dysprosium complex. From a purely experimental study of crystal field levels and electronic spin dynamics at milliKelvin temperatures, we demonstrate the ensuing threefold reduction of the tunnel splitting.

10.
Inorg Chem ; 57(7): 3500-3506, 2018 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-29323893

RESUMO

The reaction of the simple metalloligand [FeIIIL3] [HL = 1-(4-pyridyl)butane-1,3-dione] with a variety of different MII salts results in the formation of a family of heterometallic cages of formulae [FeIII8PdII6L24]Cl12 (1), [FeIII8CuII6L24(H2O)4Br4]Br8 (2), [FeIII8CuII6L24(H2O)10](NO3)12 (3), [FeIII8NiII6L24(SCN)11Cl] (4), and [FeIII8CoII6L24(SCN)10(H2O)2]Cl2 (5). The metallic skeleton of each cage describes a cube in which the FeIII ions occupy the eight vertices and the MII ions lie at the center of the six faces. Direct-current magnetic susceptibility and magnetization measurements on 3-5 reveal the presence of weak antiferromagnetic exchange between the metal ions in all three cases. Computational techniques known in theoretical nuclear physics as statistical spectroscopy, which exploit the moments of the Hamiltonian to calculate relevant thermodynamic properties, determine JFe-Cu = 0.10 cm-1 for 3 and JFe-Ni = 0.025 cm-1 for 4. Q-band electron paramagnetic resonance spectra of 1 reveal a significantly wider spectral width in comparison to [FeL3], indicating that the magnitude of the FeIII zero-field splitting is larger in the heterometallic cage than in the monomer.

11.
Dalton Trans ; 46(18): 6024-6030, 2017 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-28426044

RESUMO

Using a new polydentate Schiff-base ligand (H3L) we isolated three new tetranuclear isostructural lanthanide complexes with the general formula [LnNa2(L)4(DMF)4(H2O)2(AcO)2]·4DMF·2H2O [Ln = Dy (1), Ho (2), or Er (3)]. The structural characterization of the complexes reveals that the Na+ ions are coordinated in the structure which gives them a structure-directing role in the molecule. The magnetic behavior of the systems was investigated by means of SQUID magnetometry which revealed that complex 1 exhibits single molecule magnet behavior at low temperatures which is enhanced by the application of a 2000 Oe static magnetic field. We were able to extract an effective barrier of Ueff = 43(1) K, however, we show that the consideration of an Orbach relaxation mechanism being the dominant is not always correct for lanthanides. On the contrary, we elaborate how in this system the relaxation is caused by a combination of a direct and a Raman process.

12.
Chem Sci ; 8(5): 3566-3575, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30155201

RESUMO

Exploitation of HSAB preferences allows for high-yield, one-pot syntheses of lanthanide complexes chelated by two Pd or Pt metalloligands, [MII(SAc)4]2- (SAc- = thioacetate, M = Pd, Pt). The resulting complexes with 8 oxygen donors surrounding the lanthanides can be isolated in crystallographically tetragonal environments as either [NEt4]+ (space group: P4/mcc) or [PPh4]+ (space group: P4/n) salts. In the case of M = Pt, the complete series of lanthanide complexes has been structurally characterized as the [NEt4]+ salts (except for Ln = Pm), while the [PPh4]+ salts have been structurally characterized for Ln = Gd-Er, Y. For M = Pd, selected lanthanide complexes have been structurally characterized as both salts. The only significant structural difference between salts of the two counter ions is the resulting twist angle connecting tetragonal prismatic and tetragonal anti-prismatic configurations, with the [PPh4]+ salts approaching ideal D4d symmetry very closely (φ = 44.52-44.61°) while the [NEt4]+ salts exhibit intermediate twist angles in the interval φ = 17.28-27.41°, the twist increasing as the complete 4f series is traversed. Static magnetic properties for the latter half of the lanthanide series are found to agree well in the high temperature limit with the expected Curie behavior. Perpendicular and parallel mode EPR spectroscopy on randomly oriented powder samples and single crystals of the Gd complexes with respectively Pd- and Pt-based metalloligands demonstrate the nature of the platinum metal to strongly affect the spectra. Consistent parametrization of all of the EPR spectra reveals the main difference to stem from a large difference in the magnitude of the leading axial term, B02, this being almost four times larger for the Pt-based complexes as compared to the Pd analogues, indicating a direct Pt(5d z2 )-Ln interaction and an arguable coordination number of 10 rather than 8. The parametrization of the EPR spectra also confirms that off-diagonal operators are associated with non-zero parameters for the [NEt4]+ salts, while only contributing minimally for the [PPh4]+ salts in which lanthanide coordination approximates D4d point group symmetry closely.

13.
Inorg Chem ; 55(20): 10377-10382, 2016 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-27670363

RESUMO

A tetranuclear [2 × 2] grid-like manganese(III) Schiff base complex, Mn4, has been synthesized and characterized by single-crystal X-ray crystallography. Direct-current magnetization measurements were performed on the system and proved to be insufficient for an accurate magnetic model to be deduced. Combined inelastic neutron scattering (INS) and electron paramagnetic resonance (EPR) experiments provided the necessary information in order to successfully model the magnetic properties of Mn4. The resulting model takes into account both the magnitude and the relative orientations of the single-ion anisotropy tensors.

15.
Nat Commun ; 7: 12195, 2016 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-27435800

RESUMO

New exotic phenomena have recently been discovered in oxides of paramagnetic Ir(4+) ions, widely known as 'iridates'. Their remarkable properties originate from concerted effects of the crystal field, magnetic interactions and strong spin-orbit coupling, characteristic of 5d metal ions. Despite numerous experimental reports, the electronic structure of these materials is still challenging to elucidate, and not attainable in the isolated, but chemically inaccessible, [IrO6](8-) species (the simplest molecular analogue of the elementary {IrO6}(8-) fragment present in all iridates). Here, we introduce an alternative approach to circumvent this problem by substituting the oxide ions in [IrO6](8-) by isoelectronic fluorides to form the fluorido-iridate: [IrF6](2-). This molecular species has the same electronic ground state as the {IrO6}(8-) fragment, and thus emerges as an ideal model for iridates. These results may open perspectives for using fluorido-iridates as building-blocks for electronic and magnetic quantum materials synthesized by soft chemistry routes.

16.
J Am Chem Soc ; 138(18): 5801-4, 2016 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-27105449

RESUMO

Quantum coherence is detected in the 4f single-ion magnet (SIM) Yb(trensal), by isotope selective pulsed EPR spectroscopy on an oriented single crystal. At X-band, the spin-lattice relaxation (T1) and phase memory (Tm) times are found to be independent of the nuclei bearing, or not, a nuclear spin. The observation of Rabi oscillations of the spin echo demonstrates the possibility to coherently manipulate the system for more than 70 rotations. This renders Yb(trensal), a sublimable and chemically modifiable SIM, an excellent candidate for quantum information processing.

17.
Inorg Chem ; 55(4): 1453-60, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26824164

RESUMO

The use of a simple two-center model to describe exchange-coupled systems of various complexities is common in the field of coordination chemistry and molecular magnetism. In this work we investigate the applicability of this model experimentally, employing multifrequency, single-crystal EPR on axial dinuclear chromium(III) systems amenable to accurate parametrizations. The very high confidence with which zero-field splitting parameters can be determined by this technique, applied to the systems in question, allows for an in-depth analysis of the modeling. We experimentally demonstrate and qualitatively account for the energy-dependent modification of the spin-multiplet anisotropies, which is introduced by the exchange interaction. Even for the simple systems under consideration, we find that the standard modeling provides an inadequate parametrization of experimental data, and we present a convenient model extension, which improves the description.

18.
Inorg Chem ; 54(15): 7600-6, 2015 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-26201004

RESUMO

Determination of the electronic energy spectrum of a trigonal-symmetry mononuclear Yb(3+) single-molecule magnet (SMM) by high-resolution absorption and luminescence spectroscopies reveals that the first excited electronic doublet is placed nearly 500 cm(-1) above the ground one. Fitting of the paramagnetic relaxation times of this SMM to a thermally activated (Orbach) model {τ = τ0 × exp[ΔOrbach/(kBT)]} affords an activation barrier, ΔOrbach, of only 38 cm(-1). This result is incompatible with the spectroscopic observations. Thus, we unambiguously demonstrate, solely on the basis of experimental data, that Orbach relaxation cannot a priori be considered as the main mechanism determining the spin dynamics of SMMs. This study highlights the fact that the general synthetic approach of optimizing SMM behavior by maximization of the anisotropy barrier, intimately linked to the ligand field, as the sole parameter to be tuned, is insufficient because of the complete neglect of the interaction of the magnetic moment of the molecule with its environment. The Orbach mechanism is expected dominant only in the cases in which the energy of the excited ligand field state is below the Debye temperature, which is typically low for molecular crystals and, thus, prevents the use of the anisotropy barrier as a design criterion for the realization of high-temperature SMMs. Therefore, consideration of additional design criteria that address the presence of alternative relaxation processes beyond the traditional double-well picture is required.

19.
Chemistry ; 21(31): 11212-8, 2015 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-26121216

RESUMO

The central Mn(II) ions in a series of calix[4]arene-stabilised butterflies can be sequentially replaced with Ln(III) ions, maintaining the structural integrity of the molecule but transforming its magnetic properties. The replacement of Mn(II) for Gd(III) allows for the examination of the transferability of spin-Hamiltonian parameters within the family as well as permitting their reliable determination. The introduction of the 4f ions results in weaker intramolecular magnetic exchange, an increase in the number of low-lying excited states, and an increase in magnetisation relaxation, highlighting the importance of exchange over single-ion anisotropy for the observation of SMM behaviour in this family of complexes. The presence of the [TM(II/III) (TBC[4])(OH)(solvent)] metalloligand (TM=transition metal, TBC=p-tBu-calix[4]arene) suggests that magnetic calix[n]arene building blocks can be employed to encapsulate a range of different "guests" within structurally robust "hosts".

20.
Angew Chem Int Ed Engl ; 54(23): 6761-4, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25891167

RESUMO

[Cr(III)8M(II)6](12+) (M(II) =Cu, Co) coordination cubes were constructed from a simple [Cr(III) L3 ] metalloligand and a "naked" M(II) salt. The flexibility in the design proffers the potential to tune the physical properties, as all the constituent parts of the cage can be changed without structural alteration. Computational techniques (known in theoretical nuclear physics as statistical spectroscopy) in tandem with EPR spectroscopy are used to interpret the magnetic behavior.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...