Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
J R Soc Interface ; 14(133)2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28768881

RESUMO

Salps are marine invertebrates comprising multiple jet-propelled swimming units during a colonial life-cycle stage. Using theory, we show that asynchronous swimming with multiple pulsed jets yields substantial hydrodynamic benefit due to the production of steady swimming velocities, which limit drag. Laboratory comparisons of swimming kinematics of aggregate salps (Salpa fusiformis and Weelia cylindrica) using high-speed video supported that asynchronous swimming by aggregates results in a smoother velocity profile and showed that this smoother velocity profile is the result of uncoordinated, asynchronous swimming by individual zooids. In situ flow visualizations of W. cylindrica swimming wakes revealed that another consequence of asynchronous swimming is that fluid interactions between jet wakes are minimized. Although the advantages of multi-jet propulsion have been mentioned elsewhere, this is the first time that the theory has been quantified and the role of asynchronous swimming verified using experimental data from the laboratory and the field.


Assuntos
Hidrodinâmica , Modelos Biológicos , Natação/fisiologia , Urocordados/fisiologia , Animais , Fenômenos Biomecânicos
3.
Integr Comp Biol ; 55(4): 753-64, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26002562

RESUMO

Fishes are well known for their remarkable maneuverability and agility. Less visible is the continuous control of stability essential for the exploitation of the full range of aquatic resources. Perturbations to posture and trajectory arise from hydrostatic and hydrodynamic forces centered in a fish (intrinsic) and from the environment (extrinsic). Hydrostatic instabilities arise from vertical and horizontal separation of the centers of mass (CM) and of buoyancy, thereby creating perturbations in roll, yaw, and pitch, with largely neglected implications for behavioral ecology. Among various forms of hydrodynamic stability, the need for stability in the face of recoil forces from propulsors is close to universal. Destabilizing torques in body-caudal fin swimming is created by inertial and viscous forces through a propulsor beat. The recoil component is reduced, damped, and corrected in various ways, including kinematics, shape of the body and fins, and deployment of the fins. We postulate that control of the angle of orientation, θ, of the trailing edge is especially important in the evolution and lifestyles of fishes, but studies are few. Control of stability and maneuvering are reflected in accelerations around the CM. Accelerations for such motions may give insight into time-behavior patterns in the wild but cannot be used to determine the expenditure of energy by free-swimming fishes.


Assuntos
Peixes/fisiologia , Atividade Motora/fisiologia , Natação/fisiologia , Animais , Fenômenos Biomecânicos
4.
J Exp Biol ; 217(Pt 19): 3504-11, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25104755

RESUMO

Some wingless insects possess aerial righting reflexes, suggesting that adaptation for controlling body orientation while falling through air could have preceded flight. When threatened by natural enemies, wingless pea aphids (Acyrthosiphon pisum) may drop off their host plant and assume a stereotypic posture that rotates them in midair to land on their feet. The sensory information triggering aphids to assume this posture has so far been unknown. We subjected aphids to a series of tests, isolating the sensory cues experienced during free-fall. Falling aphids assumed the righting posture and landed upright irrespective of whether the experiments were carried out in the light or in complete darkness. Detachment of the tarsi from the substrate triggered the aphids to assume the posture rapidly, but only for a brief period. Rotation (mainly roll and yaw) of the body in air, in the light, caused aphids to assume the posture and remain in it throughout rotation. In contrast, aphids rotated in the dark did not respond. Acceleration associated with falling or airflow over the body per se did not trigger the posture. However, sensing motion relative to air heightened the aphids' responsiveness to rotation in the light. These results suggest that the righting posture of aphids is triggered by a tarsal reflex, but, once the aphid is airborne, vision and a sense of motion relative to air can augment the response. Hence, aerial righting in a wingless insect could have emerged as a basic tarsal response and developed further to include secondary sensory cues typical of falling.


Assuntos
Afídeos/fisiologia , Comportamento Animal , Reflexo de Endireitamento/fisiologia , Animais , Comportamento Animal/fisiologia , Escuridão , Voo Animal , Orientação , Postura , Rotação , Percepção Visual
5.
J Theor Biol ; 336: 158-72, 2013 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-23907027

RESUMO

Weihs theoretically revealed that during the movement of fish with negative buoyancy, more kinetic energy is saved in the glide and upward (GAU) swimming mode than in the continuous horizontal swimming mode. Because kinetic energy saving depends on dynamic parameters such as the drag and lift of the body, the effects of variations in these parameters on energy saving for different species remain unknown. Here, the kinetic energy saving of Pacific bluefin tuna (PBT), Thunnus orientalis, exhibiting the GAU swimming mode was investigated. The dynamic properties of PBT were estimated by carrying out CFD analysis. The CFD model was produced by using a three-dimensional laser surface profiler, and the model was controlled such that it exhibited swimming motion similar to that of a live PBT swimming in a flume tank. The drag generated by tail beating, which significantly affects the kinetic energy during motion, was twice that generated in the glide mode. The faster the upward swimming speed, the lesser is the kinetic energy saving; therefore, when the upward swimming speed is more than twice the glide speed, there is no gain in the GAU mode. However, when SMR (Standard Metabolic Rate) is considered, if the energy based on SMR is assumed to be 30% of the total energy spent during motion, the most efficient upward swimming speed is 1.4 times the glide speed. The GAU swimming mode of PBT leads to energy saving during motion, and the upward swimming speed and the lift force produced by the pectoral fins for the most efficient drive are unique for different species of different sizes.


Assuntos
Metabolismo Energético , Hidrodinâmica , Natação/fisiologia , Atum/fisiologia , Animais , Metabolismo Basal , Cinética , Modelos Biológicos , Movimento (Física) , Oceano Pacífico , Fatores de Tempo , Viscosidade
6.
Bioinspir Biomim ; 8(3): 036004, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23837996

RESUMO

Click-beetles jump from an inverted position without using their legs. This unique mechanism results in high vertical jumps with the jump angle restricted by the rigid morphology of the exoskeleton. We explored the option to exploit this jumping mechanism for application to small mechanical devices having to extricate themselves from rough terrain. We combined experiments on a biomimetic jumping device with a physical-mathematical model of the jump to assess the effect of morphological variation on the jumping performance. We found that through morphological change of two non-dimensional (size independent) parameters, the propulsive force powering the jump can be directed at angles as small as 40°. However, in practice jumping at such angles is precluded by loss of traction with the ground during the push-off phase. This limitation to steep jump angles is inherent to the jumping mechanism which is based on rotation of body parts about a single hinge. Such a rotation dictates a curvilinear trajectory for the center of mass during takeoff so that the vertical and horizontal accelerations occur out of phase, implying loss of traction with the ground before substantial horizontal acceleration can be reached. Thus click-beetle inspired jumping is effective mainly for making steep-angle righting jumps.


Assuntos
Besouros/fisiologia , Marcha/fisiologia , Locomoção/fisiologia , Modelos Biológicos , Esforço Físico/fisiologia , Robótica/métodos , Animais , Simulação por Computador , Fricção
8.
Artigo em Inglês | MEDLINE | ID: mdl-22547148

RESUMO

Evasive steering is crucial for flying in a crowded environment such as a locust swarm. We investigated how flying locusts alter wing-flapping symmetry in response to a looming object approaching from the side. Desert locusts (Schistocerca gregaria) were tethered to a rotatable shaft that allowed them to initiate a banked turn. A visual stimulus of an expending disk on one side of the locust was used to evoke steering while recording the change in wingbeat kinematics and electromyography (EMG) of metathoracic wing depressors. Locusts responded to the looming object by rolling to the contralateral direction. During turning, EMG of hindwing depressors showed an omission of one action potential in the subalar depressor (M129) of the hindwing inside the turn. This omission was associated with increased pronation of the same wing, reducing its angle-of-attack during the downstroke. The link between spike-omission in M129 and wing pronation was verified by stimulating the hindwing depressor muscles with an artificial motor pattern that included the misfire of M129. These results suggest that hindwing pronation is instrumental in rotating the body to the side opposite of the approaching threat. Turning away from the threat would be highly adaptive for collision avoidance when flying in dense swarms.


Assuntos
Voo Animal , Gafanhotos/fisiologia , Percepção Visual , Asas de Animais/fisiologia , Potenciais de Ação , Animais , Fenômenos Biomecânicos , Sinais (Psicologia) , Eletromiografia , Feminino , Gafanhotos/anatomia & histologia , Masculino , Percepção de Movimento , Músculos/fisiologia , Estimulação Luminosa , Densidade Demográfica , Pronação , Rotação , Meio Social , Percepção Espacial , Fatores de Tempo , Gravação em Vídeo , Asas de Animais/anatomia & histologia
9.
PLoS One ; 6(6): e20871, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21698194

RESUMO

To return to their feet, inverted click-beetles (Elateridae) jump without using their legs. When a beetle is resting on its dorsal side, a hinge mechanism is locked to store elastic energy in the body and releases it abruptly to launch the beetle into the air. While the functional morphology of the jumping mechanism is well known, the level of control that the beetle has over this jumping technique and the mechanical constraints governing the jumps are not entirely clear. Here we show that while body rotations in air are highly variable, the jumps are morphologically constrained to a constant "takeoff" angle (79.9°±1.56°, n = 9 beetles) that directs 98% of the jumping force vertically against gravity. A physical-mathematical model of the jumping action, combined with measurements from live beetle, imply that the beetle may control the speed at takeoff but not the jumping angle. In addition, the model shows that very subtle changes in the exact point of contact with the ground can explain the vigorous rotations of the body seen while the beetle is airborne. These findings suggest that the evolution of this unique non-legged jumping mechanism resulted in a jumping technique that is capable of launching the body high into the air but it is too constrained and unstable to allow control of body orientation at landing.


Assuntos
Besouros/fisiologia , Movimento , Animais , Fenômenos Biomecânicos , Modelos Biológicos
10.
J Am Chem Soc ; 132(41): 14403-5, 2010 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-20879711

RESUMO

Fuel-free magnetically driven propulsion of flexible Au/Ag/Ni nanowires, with a gold 'head' and nickel 'tail', linked by a partially dissolved and weakened silver bridge, is described. The flexible bridge facilitates the cyclic mechanical deformations under an external rotating magnetic field. Under such a field the nickel segment starts to rotate, facilitating the rotation of the gold segment at a different amplitude, hence breaking the system symmetry and inducing the movement. Forward ('pushing') and backward ('pulling') magnetically powered locomotion and a precise On/Off motion control are achieved by tailoring the length of the nickel and gold segments and modulating the magnetic field, respectively. Efficient locomotion in urine samples and in high-salt media is illustrated. The new magnetic nanowire swimmers can be prepared in large scale using a simple template electrodeposition protocol and offer considerable promise for diverse practical applications.

11.
J Exp Biol ; 211(Pt 18): 3009-19, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18775938

RESUMO

Great cormorants are foot-propelled aquatic divers utilizing a region of the water column where their underwater foraging behavior is affected by their buoyancy. While swimming horizontally underwater, cormorants use downward lift forces generated by their body and tail to overcome their buoyancy. Here we assess the potential of this swimming strategy for controlling maneuvers in the vertical plane. We recorded the birds swimming through a submerged obstacle course and analyzed their maneuvers. The birds reduced swimming speed by only 12% to maneuver and were able to turn upward and then downward in the sagittal plane at a minimal turning radius of 32+/-4 cm (40% body length). Using a quasi-steady approach, we estimated the time-line for hydrodynamic forces and the force-moments produced while maneuvering. We found that the tail is responsible for the pitch of the body while motions of the body, tail, neck and feet generate forces normal (vertically) to the swimming direction that interact with buoyancy to change the birds' trajectory. Vertical maneuvers in cormorants are asymmetric in energy cost. When turning upward, the birds use their buoyancy but they must work harder to turn downward. Lift forces generated by the body were always directed ventrally. Propulsion improves the ability to make tight turns when the center of the turn is ventral to the birds. The neck produced only a small portion (10%) of the normal vertical forces but its length may allow prey capture at the end of pursuit, within the minimum turning radius.


Assuntos
Aves/fisiologia , Natação/fisiologia , Animais , Fenômenos Biomecânicos , Aves/anatomia & histologia , Feminino , Pé/fisiologia , Masculino , Modelos Biológicos , Pescoço/fisiologia , Cauda/fisiologia , Gravação em Vídeo
12.
Philos Trans R Soc Lond B Biol Sci ; 362(1487): 2141-50, 2007 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-17472919

RESUMO

To better understand how elephant seals (Mirounga angustirostris) use negative buoyancy to reduce energy metabolism and prolong dive duration, we modelled the energetic cost of transit and deep foraging dives in an elephant seal. A numerical integration technique was used to model the effects of swim speed, descent and ascent angles, and modes of locomotion (i.e. stroking and gliding) on diving metabolic rate, aerobic dive limit, vertical displacement (maximum dive depth) and horizontal displacement (maximum horizontal distance along a straight line between the beginning and end locations of the dive) for aerobic transit and foraging dives. Realistic values of the various parameters were taken from previous experimental data. Our results indicate that there is little energetic advantage to transit dives with gliding descent compared with horizontal swimming beneath the surface. Other factors such as feeding and predator avoidance may favour diving to depth during migration. Gliding descent showed variable energy savings for foraging dives. Deep mid-water foraging dives showed the greatest energy savings (approx. 18%) as a result of gliding during descent. In contrast, flat-bottom foraging dives with horizontal swimming at a depth of 400m showed less of an energetic advantage with gliding descent, primarily because more of the dive involved stroking. Additional data are needed before the advantages of gliding descent can be fully understood for male and female elephant seals of different age and body composition. This type of data will require animal-borne instruments that can record the behaviour, three-dimensional movements and locomotory performance of free-ranging animals at depth.


Assuntos
Focas Verdadeiras/fisiologia , Natação/fisiologia , Animais , Comportamento Apetitivo/fisiologia , Feminino , Modelos Biológicos , Oceanos e Mares , Consumo de Oxigênio/fisiologia , Focas Verdadeiras/metabolismo
13.
J Exp Biol ; 209(Pt 4): 590-8, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16449554

RESUMO

The spinner dolphin (Stenella longirostris) performs spectacular leaps from the water while rotating around its longitudinal axis up to seven times. Although twisting of the body while airborne has been proposed as the mechanism to effect the spin, the morphology of the dolphin precludes this mechanism for the spinning maneuver. A mathematical model was developed that demonstrates that angular momentum to induce the spin was generated underwater, prior to the leap. Subsurface corkscrewing motion represents a balance between drive torques generated by the flukes and by hydrodynamic forces at the pectoral fins, and resistive torques, induced by the drag forces acting on the rotating control surfaces. As the dolphin leaps clear of the water, this balance is no longer maintained as the density of the air is essentially negligible, and a net drive torque remains, which permits the dolphin's rotation speed to increase by as much as a factor of three for a typical specimen. The model indicates that the high rotation rates and orientation of the dolphin's body during re-entry into the water could produce enough force to hydrodynamically dislodge unwanted remoras.


Assuntos
Atividade Motora/fisiologia , Stenella/fisiologia , Animais , Fenômenos Biomecânicos , Modelos Biológicos , Natação/fisiologia , Torque
14.
J Exp Biol ; 208(Pt 20): 3835-49, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16215212

RESUMO

Cormorants are water birds that forage by submerged swimming in search and pursuit of fish. Underwater they swim by paddling with both feet simultaneously in a gait that includes long glides between consecutive strokes. At shallow swimming depths the birds are highly buoyant as a consequence of their aerial lifestyle. To counter this buoyancy cormorants swim underwater with their body at an angle to the swimming direction. This mechanical solution for foraging at shallow depth is expected to increase the cost of swimming by increasing the drag of the birds. We used kinematic analysis of video sequences of cormorants swimming underwater at shallow depth in a controlled research setup to analyze the swimming gait and estimate the resultant drag of the birds during the entire paddling cycle. The gliding drag of the birds was estimated from swimming speed deceleration during the glide stage while the drag during active paddling was estimated using a mathematical ;burst-and-glide' model. The model was originally developed to estimate the energetic saving from combining glides with burst swimming and we used this fact to test whether the paddling gait of cormorants has similar advantages. We found that swimming speed was correlated with paddling frequency (r=0.56, P<0.001, N=95) where the increase in paddling frequency was achieved mainly by shortening the glide stage (r=-0.86, P<0.001, N=95). The drag coefficient of the birds during paddling was higher on average by two- to threefold than during gliding. However, the magnitude of the drag coefficient during the glide was positively correlated with the tilt of the body (r=0.5, P<0.003, N=35) and negatively correlated with swimming speed (r=-0.65, P<0.001, N=35), while the drag coefficient during the stroke was not correlated with tilt of the body (r=-0.11, P>0.5, N=35) and was positively correlated with swimming speed (r=0.41, P<0.015, N=35). Therefore, the difference between the drag coefficient during the glide and during propulsion diminished at lower speeds and larger tilt. The mean drag of the birds for a single paddling cycle at an average swimming speed of 1.5 m s(-1) was 5.5+/-0.68 N. The burst-and-glide model predicts that energy saving from using burst-and-glide in the paddling cycle is limited to relatively fast swimming speeds (>1.5 m s(-1)), but that as the birds dive deeper (>1 m where buoyancy is reduced), the burst-and-glide gait may become beneficial even at lower speeds.


Assuntos
Aves/fisiologia , Marcha/fisiologia , Natação/fisiologia , Animais , Fenômenos Biomecânicos , Aves/anatomia & histologia
15.
J Exp Biol ; 208(Pt 2): 327-44, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15634852

RESUMO

Boxfishes (Teleostei: Ostraciidae) are marine fishes having rigid carapaces that vary significantly among taxa in their shapes and structural ornamentation. We showed previously that the keels of the carapace of one species of tropical boxfish, the smooth trunkfish, produce leading edge vortices (LEVs) capable of generating self-correcting trimming forces during swimming. In this paper we show that other tropical boxfishes with different carapace shapes have similar capabilities. We conducted a quantitative study of flows around the carapaces of three morphologically distinct boxfishes (spotted boxfish, scrawled cowfish and buffalo trunkfish) using stereolithographic models and three separate but interrelated analytical approaches: digital particle image velocimetry (DPIV), pressure distribution measurements, and force balance measurements. The ventral keels of all three forms produced LEVs that grew in circulation along the bodies, resembling the LEVs produced around delta-winged aircraft. These spiral vortices formed above the keels and increased in circulation as pitch angle became more positive, and formed below the keels and increased in circulation as pitch angle became more negative. Vortices also formed along the eye ridges of all boxfishes. In the spotted boxfish, which is largely trapezoidal in cross section, consistent dorsal vortex growth posterior to the eye ridge was also present. When all three boxfishes were positioned at various yaw angles, regions of strongest concentrated vorticity formed in far-field locations of the carapace compared with near-field areas, and vortex circulation was greatest posterior to the center of mass. In general, regions of localized low pressure correlated well with regions of attached, concentrated vorticity, especially around the ventral keels. Although other features of the carapace also affect flow patterns and pressure distributions in different ways, the integrated effects of the flows were consistent for all forms: they produce trimming self-correcting forces, which we measured directly using the force balance. These data together with previous work on smooth trunkfish indicate that body-induced vortical flows are a common mechanism that is probably significant for trim control in all species of tropical boxfishes.


Assuntos
Modelos Anatômicos , Natação/fisiologia , Tetraodontiformes/anatomia & histologia , Tetraodontiformes/fisiologia , Animais , Fenômenos Biomecânicos , Equilíbrio Postural , Pressão , Reologia , Especificidade da Espécie
16.
J Biol ; 3(2): 8, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15132740

RESUMO

BACKGROUND: Drafting in cetaceans is defined as the transfer of forces between individuals without actual physical contact between them. This behavior has long been surmised to explain how young dolphin calves keep up with their rapidly moving mothers. It has recently been observed that a significant number of calves become permanently separated from their mothers during chases by tuna vessels. A study of the hydrodynamics of drafting, initiated in the hope of understanding the mechanisms causing the separation of mothers and calves during fishing-related activities, is reported here. RESULTS: Quantitative results are shown for the forces and moments around a pair of unequally sized dolphin-like slender bodies. These include two major effects. First, the so-called Bernoulli suction, which stems from the fact that the local pressure drops in areas of high speed, results in an attractive force between mother and calf. Second is the displacement effect, in which the motion of the mother causes the water in front to move forwards and radially outwards, and water behind the body to move forwards to replace the animal's mass. Thus, the calf can gain a 'free ride' in the forward-moving areas. Utilizing these effects, the neonate can gain up to 90% of the thrust needed to move alongside the mother at speeds of up to 2.4 m/sec. A comparison with observations of eastern spinner dolphins (Stenella longirostris) is presented, showing savings of up to 60% in the thrust that calves require if they are to keep up with their mothers. CONCLUSIONS: A theoretical analysis, backed by observations of free-swimming dolphin schools, indicates that hydrodynamic interactions with mothers play an important role in enabling dolphin calves to keep up with rapidly moving adult school members.


Assuntos
Comportamento Animal/fisiologia , Golfinhos/fisiologia , Modelos Biológicos , Natação/fisiologia , Animais
17.
J Exp Biol ; 207(Pt 12): 2101-14, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15143144

RESUMO

Buoyancy is a de-stabilizing force for diving cormorants that forage at shallow depths. Having to counter this force increases the cost of transport underwater. Cormorants are known to be less buoyant than most water birds but are still highly buoyant (rho= approximately 0.8 kg m(-3)) due to their adaptations for aerial flight. Nevertheless, cormorants are known to dive at a wide range of depths, including shallow dives where buoyancy is maximal. We analyzed the kinematics of underwater swimming of the great cormorant (Phalacrocorax carbo sinensis) in a shallow pool to discover and evaluate the mechanisms countering buoyancy while swimming horizontally. The birds maintained a very uniform cyclic paddling pattern. Throughout this cycle, synchronized tilting of the body, controlled by the tail, resulted in only slight vertical drifts of the center of mass around the average swimming path. We suggest that this tilting behavior serves two purposes: (1) the elongated bodies and the long tails of cormorants, tilted at a negative angle of attack relative to the swimming direction, generate downward directed hydrodynamic lift to resist buoyancy and (2) during the propulsive phase, the motion of the feet has a significant vertical component, generating a vertical component of thrust downward, which further helps to offset buoyancy. The added cost of the drag resulting from this tilting behavior may be reduced by the fact that the birds use a burst-and-glide pattern while swimming.


Assuntos
Aves/fisiologia , Mergulho , Modelos Teóricos , Natação/fisiologia , Animais , Fenômenos Biomecânicos , Pesos e Medidas Corporais , Israel , Gravação em Vídeo
18.
J Exp Biol ; 206(Pt 4): 725-44, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12517990

RESUMO

The hydrodynamic bases for the stability of locomotory motions in fishes are poorly understood, even for those fishes, such as the rigid-bodied smooth trunkfish Lactophrys triqueter, that exhibit unusually small amplitude recoil movements during rectilinear swimming. We have studied the role played by the bony carapace of the smooth trunkfish in generating trimming forces that self-correct for instabilities. The flow patterns, forces and moments on and around anatomically exact, smooth trunkfish models positioned at both pitching and yawing angles of attack were investigated using three methods: digital particle image velocimetry (DPIV), pressure distribution measurements, and force balance measurements. Models positioned at various pitching angles of attack within a flow tunnel produced well-developed counter-rotating vortices along the ventro-lateral keels. The vortices developed first at the anterior edges of the ventro-lateral keels, grew posteriorly along the carapace, and reached maximum circulation at the posterior edge of the carapace. The vortical flow increased in strength as pitching angles of attack deviated from 0 degrees, and was located above the keels at positive angles of attack and below them at negative angles of attack. Variation of yawing angles of attack resulted in prominent dorsal and ventral vortices developing at far-field locations of the carapace; far-field vortices intensified posteriorly and as angles of attack deviated from 0 degrees. Pressure distribution results were consistent with the DPIV findings, with areas of low pressure correlating well with regions of attached, concentrated vorticity. Lift coefficients of boxfish models were similar to lift coefficients of delta wings, devices that also generate lift through vortex generation. Furthermore, nose-down and nose-up pitching moments about the center of mass were detected at positive and negative pitching angles of attack, respectively. The three complementary experimental approaches all indicate that the carapace of the smooth trunkfish effectively generates self-correcting forces for pitching and yawing motions--a characteristic that is advantageous for the highly variable velocity fields experienced by trunkfish in their complex aquatic environment. All important morphological features of the carapace contribute to producing the hydrodynamic stability of swimming trajectories in this species.


Assuntos
Peixes/anatomia & histologia , Peixes/fisiologia , Atividade Motora/fisiologia , Animais , Processamento de Imagem Assistida por Computador , Modelos Biológicos , Movimento , Pressão , Natação/fisiologia
19.
Integr Comp Biol ; 42(5): 971-80, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21680378

RESUMO

Boxfishes (Teleostei: Ostraciidae) are rigid-body, multi-propulsor swimmers that exhibit unusually small amplitude recoil movements during rectilinear locomotion. Mechanisms producing the smooth swimming trajectories of these fishes are unknown, however. Therefore, we have studied the roles the bony carapaces of these fishes play in generating this dynamic stability. Features of the carapaces of four morphologically distinct species of boxfishes were measured, and anatomically-exact stereolithographic models of the boxfishes were constructed. Flow patterns around each model were investigated using three methods: 1) digital particle image velocimetry (DPIV), 2) pressure distribution measurements, and 3) force balance measurements. Significant differences in both cross-sectional and longitudinal carapace morphology were detected among the four species. However, results from the three interrelated approaches indicate that flow patterns around the various carapaces are remarkably similar. DPIV results revealed that the keels of all boxfishes generate strong longitudinal vortices that vary in strength and position with angle of attack. In areas where attached, concentrated vorticity was detected using DPIV, low pressure also was detected at the carapace surface using pressure sensors. Predictions of the effects of both observed vortical flow patterns and pressure distributions on the carapace were consistent with actual forces and moments measured using the force balance. Most notably, the three complementary experimental approaches consistently indicate that the ventral keels of all boxfishes, and in some species the dorsal keels as well, effectively generate self-correcting forces for pitching motions-a characteristic that is advantageous for the highly variable velocity fields in which these fishes reside.

20.
Integr Comp Biol ; 42(1): 127-34, 2002 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21708701

RESUMO

The dictionary definition of stability as "Firmly established, not easily to be changed" immediately indicates the conflict between stability and maneuverability in aquatic locomotion. The present paper addresses several issues resulting from these opposing requirements. Classical stability theory for bodies moving in fluids is based on developments in submarine and airship motions. These have lateral symmetry, in common with most animals. This enables the separation of the equations of motion into two sets of 3 each. The vertical (longitudinal) set, which includes motions in the axial (surge), normal (heave) and pitching directions, can thus be separated from the lateral-horizontal plane which includes yaw, roll and sideslip motions. This has been found useful in the past for longitudinal stability studies based on coasting configurations but is not applicable to the analysis of turning, fast starts and vigorous swimming, where the lateral symmetry of the fish body is broken by bending motions. The present paper will also examine some of the aspects of the stability vs. maneuverability tradeoff for these asymmetric motions. An analysis of the conditions under which the separation of equations of motions into vertical and horizontal planes is justified, and a definition of the equations to be used in cases where this separation is not accurate enough is presented.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...