Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Chemosphere ; 336: 139198, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37315860

RESUMO

Concentrations of 25 inorganic elements were measured in both bulk ash and individual ash components from residuals at three municipal solid waste incineration (MSWI) facilities in the US (two combined ash (CA) and one bottom ash (BA)). Concentrations were assessed based on particle size and component to understand the contribution from each fraction. The results found that among facilities, the finer size fractions contained elevated concentrations of trace elements of concern (As, Pb, Sb) when compared to the coarse fraction, but concentrations varied among facilities depending on the type of ash and differences in advanced metals recovery processes. This study focused on several constituents of potential concern, As, Ba, Cu, Pb, and Sb, and found that the main components of MSWI ash (glass, ceramic, concrete, and slag) are sources of these elements in the ash streams. For many elements, concentrations were significantly higher in CA bulk and component fractions opposed to BA streams. An acid treatment procedure and scanning electron microscopy/energy-dispersive x-ray spectroscopy analysis revealed that some elements, such as As in concrete, are result of the inherent properties of the component, but other elements, such as Sb, form on the surface during or after incineration and can be removed. Some Pb and Cu concentrations were attributed to inclusions in the glass or slag introduced into the material during the incineration process. Understanding the contributions of each ash component provides critical information for developing strategies to reduce trace element concentrations in ash streams to promote reuse opportunities.


Assuntos
Metais Pesados , Eliminação de Resíduos , Oligoelementos , Incineração , Resíduos Sólidos/análise , Oligoelementos/análise , Chumbo/análise , Cinza de Carvão/química , Metais Pesados/análise
2.
Sci Total Environ ; 851(Pt 1): 158163, 2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-35988635

RESUMO

Phosphogypsum (PG) samples from four distinct sources in the Southeastern US were analyzed to explore the variation in total metal content between newly generated (fresh) PG and PG disposed of in phosphogypsum stacks for different lengths of time (stack). Fresh PG exhibited greater total metal concentrations relative to stack PG, including those identified in the literature as important from a risk assessment perspective (As, Cd, Co, Cr, Cu, Pb, and Zn). The pH varied between fresh and stack PG, with some stack samples exhibiting lower pH than fresh samples, however the relationship between pH and age of sample was not linear. Stack samples with pH values similar to fresh samples possessed lower concentrations of total inorganic metals than fresh samples suggesting that process water drainage and stack location play an important role in the reusability of PG as they can affect the pH of stack PG and total inorganic metal concentrations. Overall observations show that stacking PG for three or more years prior to beneficial reuse provides a construction material with lower total metal concentrations than fresh PG.


Assuntos
Metais Pesados , Oligoelementos , Cádmio , Sulfato de Cálcio , Monitoramento Ambiental , Chumbo , Metais Pesados/análise , Fósforo , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...