Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 102021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34032568

RESUMO

During hunger or malnutrition, animals prioritize alimentation of the brain over other organs to ensure its function and, thus, their survival. This protection, also-called brain sparing, is described from Drosophila to humans. However, little is known about the molecular mechanisms adapting carbohydrate transport. Here, we used Drosophila genetics to unravel the mechanisms operating at the blood-brain barrier (BBB) under nutrient restriction. During starvation, expression of the carbohydrate transporter Tret1-1 is increased to provide more efficient carbohydrate uptake. Two mechanisms are responsible for this increase. Similar to the regulation of mammalian GLUT4, Rab-dependent intracellular shuttling is needed for Tret1-1 integration into the plasma membrane; even though Tret1-1 regulation is independent of insulin signaling. In addition, starvation induces transcriptional upregulation that is controlled by TGF-ß signaling. Considering TGF-ß-dependent regulation of the glucose transporter GLUT1 in murine chondrocytes, our study reveals an evolutionarily conserved regulatory paradigm adapting the expression of sugar transporters at the BBB.


Assuntos
Barreira Hematoencefálica , Metabolismo dos Carboidratos , Transdução de Sinais , Inanição , Fator de Crescimento Transformador beta/metabolismo , Animais , Transporte Biológico , Drosophila , Regulação da Expressão Gênica , Glucose/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Neuroglia/citologia , Neuroglia/metabolismo , Transcrição Gênica , Trealose/metabolismo , Regulação para Cima , Proteínas rab de Ligação ao GTP/metabolismo
2.
Front Behav Neurosci ; 14: 612430, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33551766

RESUMO

Neuronal function is highly energy demanding, requiring efficient transport of nutrients into the central nervous system (CNS). Simultaneously the brain must be protected from the influx of unwanted solutes. Most of the energy is supplied from dietary sugars, delivered from circulation via the blood-brain barrier (BBB). Therefore, selective transporters are required to shuttle metabolites into the nervous system where they can be utilized. The Drosophila BBB is formed by perineural and subperineurial glial cells, which effectively separate the brain from the surrounding hemolymph, maintaining a constant microenvironment. We identified two previously unknown BBB transporters, MFS3 (Major Facilitator Superfamily Transporter 3), located in the perineurial glial cells, and Pippin, found in both the perineurial and subperineurial glial cells. Both transporters facilitate uptake of circulating trehalose and glucose into the BBB-forming glial cells. RNA interference-mediated knockdown of these transporters leads to pupal lethality. However, null mutants reach adulthood, although they do show reduced lifespan and activity. Here, we report that both carbohydrate transport efficiency and resulting lethality found upon loss of MFS3 or Pippin are rescued via compensatory upregulation of Tret1-1, another BBB carbohydrate transporter, in Mfs3 and pippin null mutants, while RNAi-mediated knockdown is not compensated for. This means that the compensatory mechanisms in place upon mRNA degradation following RNA interference can be vastly different from those resulting from a null mutation.

3.
Neurobiol Dis ; 107: 15-31, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28237316

RESUMO

The nervous system in higher vertebrates is separated from the circulation by a layer of specialized endothelial cells. It protects the sensitive neurons from harmful blood-derived substances, high and fluctuating ion concentrations, xenobiotics or even pathogens. To this end, the brain endothelial cells and their interlinking tight junctions build an efficient diffusion barrier. A structurally analogous diffusion barrier exists in insects, where glial cell layers separate the hemolymph from the neural cells. Both types of diffusion barriers, of course, also prevent influx of metabolites from the circulation. Because neuronal function consumes vast amounts of energy and necessitates influx of diverse substrates and metabolites, tightly regulated transport systems must ensure a constant metabolite supply. Here, we review the current knowledge about transport systems that carry key metabolites, amino acids, lipids and carbohydrates into the vertebrate and Drosophila brain and how this transport is regulated. Blood-brain and hemolymph-brain transport functions are conserved and we can thus use a simple, genetically accessible model system to learn more about features and dynamics of metabolite transport into the brain.


Assuntos
Transporte Biológico/fisiologia , Barreira Hematoencefálica/metabolismo , Hemolinfa/metabolismo , Animais , Humanos , Insetos , Mamíferos
4.
Cell Metab ; 22(3): 437-47, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26235423

RESUMO

Neuronal information processing requires a large amount of energy, indicating that sugars and other metabolites must be efficiently delivered. However, reliable neuronal function also depends on the maintenance of a constant microenvironment in the brain. Therefore, neurons are efficiently separated from circulation by the blood-brain barrier, and their long axons are insulated by glial processes. At the example of the Drosophila brain, we addressed how sugar is shuttled across the barrier to nurture neurons. We show that glial cells of the blood-brain barrier specifically take up sugars and that their metabolism relies on glycolysis, which, surprisingly, is dispensable in neurons. Glial cells secrete alanine and lactate to fuel neuronal mitochondria, and lack of glial glycolysis specifically in the adult brain causes neurodegeneration. Our work implies that a global metabolic compartmentalization and coupling of neurons and glial cells is a conserved, fundamental feature of bilaterian nervous systems independent of their size.


Assuntos
Barreira Hematoencefálica/metabolismo , Drosophila/fisiologia , Glicólise , Neuroglia/metabolismo , Neurônios/metabolismo , Trealose/metabolismo , Alanina/metabolismo , Animais , Barreira Hematoencefálica/citologia , Sobrevivência Celular , Drosophila/metabolismo , Metabolismo Energético , Feminino , Ácido Láctico/metabolismo , Locomoção , Neuroglia/citologia , Neurônios/citologia
5.
Front Neurosci ; 8: 365, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25452710

RESUMO

The efficacy of neuronal function requires a well-balanced extracellular ion homeostasis and a steady supply with nutrients and metabolites. Therefore, all organisms equipped with a complex nervous system developed a so-called blood-brain barrier, protecting it from an uncontrolled entry of solutes, metabolites or pathogens. In higher vertebrates, this diffusion barrier is established by polarized endothelial cells that form extensive tight junctions, whereas in lower vertebrates and invertebrates the blood-brain barrier is exclusively formed by glial cells. Here, we review the development and function of the glial blood-brain barrier of Drosophila melanogaster. In the Drosophila nervous system, at least seven morphologically distinct glial cell classes can be distinguished. Two of these glial classes form the blood-brain barrier. Perineurial glial cells participate in nutrient uptake and establish a first diffusion barrier. The subperineurial glial (SPG) cells form septate junctions, which block paracellular diffusion and thus seal the nervous system from the hemolymph. We summarize the molecular basis of septate junction formation and address the different transport systems expressed by the blood-brain barrier forming glial cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...