Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Pharm Sci ; 90: 2-7, 2016 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-27112991

RESUMO

The regulatory and technical landscape of the pharmaceutical field is rapidly evolving from one focused predominantly on development of small molecules, using well established manufacturing technologies towards an environment in which biologicals and complex modalities are being developed using advanced science and technology coupled with the application of modern Quality by Design (QbD) principles. In order that Europe keeps pace with these changes and sustains its position as major player in the development and commercialization of medicines, it is essential that measures are put in place to maintain a highly skilled workforce. A number of challenges however exist to equipping academic, industrial and health agency staff with the requisite knowledge, skills and experience to develop the next generation of medicines. In this regard, the EUFEPS QbD and PAT Sciences Network has proposed a structured framework for education, training and continued professional development, which comprises a number of pillars covering the fundamental principles of modern pharmaceutical development including the underpinning aspects of science, engineering and technology innovation. The framework is not prescriptive and is not aimed at describing specific course content in detail. It should however be used as a point of reference for those institutions delivering pharmaceutical based educational courses, to ensure that the necessary skills, knowledge and experience for successful pharmaceutical development are maintained. A positive start has been made and a number of examples of formal higher education courses and short training programs containing elements of this framework have been described. The ultimate vision for this framework however, is to see widespread adoption and proliferation of this curriculum with it forming the backbone of QbD and PAT science based skills development.


Assuntos
Indústria Farmacêutica/educação , Tecnologia Farmacêutica/educação , Indústria Farmacêutica/normas , Controle de Qualidade , Tecnologia Farmacêutica/normas
2.
Eur J Pharm Biopharm ; 97(Pt A): 78-89, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26455421

RESUMO

Scope of the study was (1) to develop a lean quantitative calibration for real-time near-infrared (NIR) blend monitoring, which meets the requirements in early development of pharmaceutical products and (2) to compare the prediction performance of this approach with the results obtained from stratified sampling using a sample thief in combination with off-line high pressure liquid chromatography (HPLC) and at-line near-infrared chemical imaging (NIRCI). Tablets were manufactured from powder blends and analyzed with NIRCI and HPLC to verify the real-time results. The model formulation contained 25% w/w naproxen as a cohesive active pharmaceutical ingredient (API), microcrystalline cellulose and croscarmellose sodium as cohesive excipients and free-flowing mannitol. Five in-line NIR calibration approaches, all using the spectra from the end of the blending process as reference for PLS modeling, were compared in terms of selectivity, precision, prediction accuracy and robustness. High selectivity could be achieved with a "reduced" approach i.e. API and time saving approach (35% reduction of API amount) based on six concentration levels of the API with three levels realized by three independent powder blends and the additional levels obtained by simply increasing the API concentration in these blends. Accuracy and robustness were further improved by combining this calibration set with a second independent data set comprising different excipient concentrations and reflecting different environmental conditions. The combined calibration model was used to monitor the blending process of independent batches. For this model formulation the target concentration of the API could be achieved within 3 min indicating a short blending time. The in-line NIR approach was verified by stratified sampling HPLC and NIRCI results. All three methods revealed comparable results regarding blend end point determination. Differences in both mean API concentration and RSD values could be attributed to differences in effective sample size and thief sampling errors. This conclusion was supported by HPLC and NIRCI analysis of tablets manufactured from powder blends after different blending times. In summary, the study clearly demonstrates the ability to develop efficient and robust quantitative calibrations for real-time NIR powder blend monitoring with a reduced set of powder blends while avoiding any bias caused by physical sampling.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Excipientes/química , Naproxeno/administração & dosagem , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Calibragem , Carboximetilcelulose Sódica/química , Celulose/química , Química Farmacêutica/métodos , Manitol/química , Modelos Teóricos , Naproxeno/química , Pós , Reprodutibilidade dos Testes , Comprimidos , Tecnologia Farmacêutica/métodos , Fatores de Tempo
3.
Eur J Pharm Sci ; 47(2): 402-5, 2012 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-22749874

RESUMO

Substantial changes in Pharmaceutical R&D strategy are required to address existing issues of low productivity, imminent patent expirations and pressures on pricing. Moves towards personalized healthcare and increasing diversity in the nature of portfolios including the rise of biopharmaceuticals however have the potential to provide considerable challenges to the establishment of cost effective and robust supply chains. To guarantee product quality and surety of supply for essential medicines it is necessary that manufacturing science keeps pace with advances in pharmaceutical R&D. In this position paper, the EUFEPS QbD and PAT Sciences network make recommendations that European industry, academia and health agencies focus attention on delivering step changes in science and technology in a number of key themes. These subject areas, all underpinned by the sciences allied to QbD and PAT, include product design and development for personalized healthcare, continuous-processing in pharmaceutical product manufacture, quantitative quality risk assessment for pharmaceutical development including life cycle management and the downstream processing of biopharmaceutical products. Plans are being established to gain commitment for inclusion of these themes into future funding priorities for the Innovative Medicines Initiative (IMI).


Assuntos
Indústria Farmacêutica , Controle de Qualidade , Tecnologia Farmacêutica , Pesquisa Biomédica/economia , Pesquisa Biomédica/normas , Biofarmácia/economia , Biofarmácia/normas , Desenho de Fármacos , Indústria Farmacêutica/economia , Indústria Farmacêutica/normas , União Europeia , Medicina de Precisão , Medição de Risco , Tecnologia Farmacêutica/economia , Tecnologia Farmacêutica/normas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...