Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 629
Filtrar
1.
Am J Psychiatry ; 181(6): 482-492, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38822584

RESUMO

Schizophrenia is routinely referred to as a neurodevelopmental disorder, but the role of brain development in a disorder typically diagnosed during early adult life is enigmatic. The authors revisit the neurodevelopmental model of schizophrenia with genomic insights from the most recent schizophrenia clinical genetic association studies, transcriptomic and epigenomic analyses from human postmortem brain studies, and analyses from cellular models that recapitulate neurodevelopment. Emerging insights into schizophrenia genetic risk continue to converge on brain development, particularly stages of early brain development, that may be perturbed to deviate from a typical, normative course, resulting in schizophrenia clinical symptomatology. As the authors explicate, schizophrenia genetic risk is likely dynamic and context dependent, with effects of genetic risk varying spatiotemporally, across the neurodevelopmental continuum. Optimizing therapeutic strategies for the heterogeneous collective of individuals with schizophrenia may likely be guided by leveraging markers of genetic risk and derivative functional insights, well before the emergence of psychosis. Ultimately, rather than a focus on therapeutic intervention during adolescence or adulthood, principles of prediction and prophylaxis in the pre- and perinatal and neonatal stages may best comport with the biology of schizophrenia to address the early-stage perturbations that alter the normative neurodevelopmental trajectory.


Assuntos
Predisposição Genética para Doença , Esquizofrenia , Humanos , Esquizofrenia/genética , Esquizofrenia/etiologia , Predisposição Genética para Doença/genética , Encéfalo/patologia , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/etiologia
2.
BMC Infect Dis ; 24(1): 635, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918718

RESUMO

BACKGROUND: Annual epidemics of respiratory syncytial virus (RSV) had consistent timing and intensity between seasons prior to the SARS-CoV-2 pandemic (COVID-19). However, starting in April 2020, RSV seasonal activity declined due to COVID-19 non-pharmaceutical interventions (NPIs) before re-emerging after relaxation of NPIs. We described the unusual patterns of RSV epidemics that occurred in multiple subsequent waves following COVID-19 in different countries and explored factors associated with these patterns. METHODS: Weekly cases of RSV from twenty-eight countries were obtained from the World Health Organisation and combined with data on country-level characteristics and the stringency of the COVID-19 response. Dynamic time warping and regression were used to cluster time series patterns and describe epidemic characteristics before and after COVID-19 pandemic, and identify related factors. RESULTS: While the first wave of RSV epidemics following pandemic suppression exhibited unusual patterns, the second and third waves more closely resembled typical RSV patterns in many countries. Post-pandemic RSV patterns differed in their intensity and/or timing, with several broad patterns across the countries. The onset and peak timings of the first and second waves of RSV epidemics following COVID-19 suppression were earlier in the Southern than Northern Hemisphere. The second wave of RSV epidemics was also earlier with higher population density, and delayed if the intensity of the first wave was higher. More stringent NPIs were associated with lower RSV growth rate and intensity and a shorter gap between the first and second waves. CONCLUSION: Patterns of RSV activity have largely returned to normal following successive waves in the post-pandemic era. Onset and peak timings of future epidemics following disruption of normal RSV dynamics need close monitoring to inform the delivery of preventive and control measures.


Assuntos
COVID-19 , Saúde Global , Infecções por Vírus Respiratório Sincicial , SARS-CoV-2 , Humanos , COVID-19/epidemiologia , Infecções por Vírus Respiratório Sincicial/epidemiologia , Estações do Ano , Vírus Sincicial Respiratório Humano , Pandemias
3.
Science ; 384(6698): eadh3707, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38781393

RESUMO

The molecular pathology of stress-related disorders remains elusive. Our brain multiregion, multiomic study of posttraumatic stress disorder (PTSD) and major depressive disorder (MDD) included the central nucleus of the amygdala, hippocampal dentate gyrus, and medial prefrontal cortex (mPFC). Genes and exons within the mPFC carried most disease signals replicated across two independent cohorts. Pathways pointed to immune function, neuronal and synaptic regulation, and stress hormones. Multiomic factor and gene network analyses provided the underlying genomic structure. Single nucleus RNA sequencing in dorsolateral PFC revealed dysregulated (stress-related) signals in neuronal and non-neuronal cell types. Analyses of brain-blood intersections in >50,000 UK Biobank participants were conducted along with fine-mapping of the results of PTSD and MDD genome-wide association studies to distinguish risk from disease processes. Our data suggest shared and distinct molecular pathology in both disorders and propose potential therapeutic targets and biomarkers.


Assuntos
Encéfalo , Transtorno Depressivo Maior , Loci Gênicos , Transtornos de Estresse Pós-Traumáticos , Feminino , Humanos , Masculino , Tonsila do Cerebelo/metabolismo , Biomarcadores/metabolismo , Encéfalo/metabolismo , Transtorno Depressivo Maior/genética , Redes Reguladoras de Genes , Estudo de Associação Genômica Ampla , Neurônios/metabolismo , Córtex Pré-Frontal/metabolismo , Transtornos de Estresse Pós-Traumáticos/genética , Biologia de Sistemas , Análise da Expressão Gênica de Célula Única , Mapeamento Cromossômico
4.
J Neurodev Disord ; 16(1): 26, 2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38796448

RESUMO

BACKGROUND: Synthetic oxytocin (sOT) is frequently administered during parturition. Studies have raised concerns that fetal exposure to sOT may be associated with altered brain development and risk of neurodevelopmental disorders. In a large and diverse sample of children with data about intrapartum sOT exposure and subsequent diagnoses of two prevalent neurodevelopmental disorders, i.e., attention deficit hyperactivity disorder (ADHD) and autism spectrum disorder (ASD), we tested the following hypotheses: (1) Intrapartum sOT exposure is associated with increased odds of child ADHD or ASD; (2) associations differ across sex; (3) associations between intrapartum sOT exposure and ADHD or ASD are accentuated in offspring of mothers with pre-pregnancy obesity. METHODS: The study sample comprised 12,503 participants from 44 cohort sites included in the Environmental Influences on Child Health Outcomes (ECHO) consortium. Mixed-effects logistic regression analyses were used to estimate the association between intrapartum sOT exposure and offspring ADHD or ASD (in separate models). Maternal obesity (pre-pregnancy BMI ≥ 30 kg/m2) and child sex were evaluated for effect modification. RESULTS: Intrapartum sOT exposure was present in 48% of participants. sOT exposure was not associated with increased odds of ASD (adjusted odds ratio [aOR] 0.86; 95% confidence interval [CI], 0.71-1.03) or ADHD (aOR 0.89; 95% CI, 0.76-1.04). Associations did not differ by child sex. Among mothers with pre-pregnancy obesity, sOT exposure was associated with lower odds of offspring ADHD (aOR 0.72; 95% CI, 0.55-0.96). No association was found among mothers without obesity (aOR 0.97; 95% CI, 0.80-1.18). CONCLUSIONS: In a large, diverse sample, we found no evidence of an association between intrapartum exposure to sOT and odds of ADHD or ASD in either male or female offspring. Contrary to our hypothesis, among mothers with pre-pregnancy obesity, sOT exposure was associated with lower odds of child ADHD diagnosis.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Transtorno do Espectro Autista , Índice de Massa Corporal , Ocitocina , Efeitos Tardios da Exposição Pré-Natal , Humanos , Feminino , Gravidez , Masculino , Transtorno do Deficit de Atenção com Hiperatividade/epidemiologia , Transtorno do Deficit de Atenção com Hiperatividade/etiologia , Criança , Transtorno do Espectro Autista/epidemiologia , Transtorno do Espectro Autista/etiologia , Adulto , Obesidade Materna/epidemiologia , Pré-Escolar , Estudos de Coortes , Obesidade/epidemiologia
5.
medRxiv ; 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38798538

RESUMO

DNA repetitive sequences (or repeats) comprise over 50% of the human genome and have a crucial regulatory role, specifically regulating transcription machinery. The human brain is the tissue with the highest detectable repeat expression and dysregulations on the repeat activity are related to several neurological and neurodegenerative disorders, as repeat-derived products can stimulate a pro-inflammatory response. Even so, it is unclear how repeat expression acts on the aging neurotypical brain. Here, we leverage a large postmortem transcriptome cohort spanning the human lifespan to assess global repeat expression in the neurotypical brain. We identified 21,696 differentially expressed repeats (DERs) that varied across seven age bins (Prenatal; 0-15; 16-29; 30-39; 40-49; 50-59; 60+) across the caudate nucleus (n=271), dorsolateral prefrontal cortex (n=304), and hippocampus (n=310). Interestingly, we found that long interspersed nuclear elements and long terminal repeats (LTRs) DERs were the most abundant repeat families when comparing infants to early adolescence (0-15) with older adults (60+). Of these differentially regulated LTRs, we identified 17 shared across all brain regions, including increased expression of HERV-K-int in older adult brains (60+). Co-expression analysis from each of the three brain regions also showed repeats from the HERV subfamily were intramodular hubs in its subnetworks. While we do not observe a strong global relationship between repeat expression and age, we identified HERV-K as a repeat signature associated with the aging neurotypical brain. Our study is the first global assessment of repeat expression in the neurotypical brain.

6.
Nat Commun ; 15(1): 3980, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730231

RESUMO

Schizophrenia is a complex neuropsychiatric disorder with sexually dimorphic features, including differential symptomatology, drug responsiveness, and male incidence rate. Prior large-scale transcriptome analyses for sex differences in schizophrenia have focused on the prefrontal cortex. Analyzing BrainSeq Consortium data (caudate nucleus: n = 399, dorsolateral prefrontal cortex: n = 377, and hippocampus: n = 394), we identified 831 unique genes that exhibit sex differences across brain regions, enriched for immune-related pathways. We observed X-chromosome dosage reduction in the hippocampus of male individuals with schizophrenia. Our sex interaction model revealed 148 junctions dysregulated in a sex-specific manner in schizophrenia. Sex-specific schizophrenia analysis identified dozens of differentially expressed genes, notably enriched in immune-related pathways. Finally, our sex-interacting expression quantitative trait loci analysis revealed 704 unique genes, nine associated with schizophrenia risk. These findings emphasize the importance of sex-informed analysis of sexually dimorphic traits, inform personalized therapeutic strategies in schizophrenia, and highlight the need for increased female samples for schizophrenia analyses.


Assuntos
Núcleo Caudado , Córtex Pré-Frontal Dorsolateral , Hipocampo , Locos de Características Quantitativas , Esquizofrenia , Caracteres Sexuais , Humanos , Esquizofrenia/genética , Esquizofrenia/metabolismo , Feminino , Masculino , Hipocampo/metabolismo , Núcleo Caudado/metabolismo , Córtex Pré-Frontal Dorsolateral/metabolismo , Adulto , Transcriptoma , Perfilação da Expressão Gênica , Fatores Sexuais , Cromossomos Humanos X/genética , Córtex Pré-Frontal/metabolismo
7.
Nat Neurosci ; 27(6): 1064-1074, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38769152

RESUMO

Ancestral differences in genomic variation affect the regulation of gene expression; however, most gene expression studies have been limited to European ancestry samples or adjusted to identify ancestry-independent associations. Here, we instead examined the impact of genetic ancestry on gene expression and DNA methylation in the postmortem brain tissue of admixed Black American neurotypical individuals to identify ancestry-dependent and ancestry-independent contributions. Ancestry-associated differentially expressed genes (DEGs), transcripts and gene networks, while notably not implicating neurons, are enriched for genes related to the immune response and vascular tissue and explain up to 26% of heritability for ischemic stroke, 27% of heritability for Parkinson disease and 30% of heritability for Alzheimer's disease. Ancestry-associated DEGs also show general enrichment for the heritability of diverse immune-related traits but depletion for psychiatric-related traits. We also compared Black and non-Hispanic white Americans, confirming most ancestry-associated DEGs. Our results delineate the extent to which genetic ancestry affects differences in gene expression in the human brain and the implications for brain illness risk.


Assuntos
Negro ou Afro-Americano , Encéfalo , Metilação de DNA , Humanos , Negro ou Afro-Americano/genética , Encéfalo/metabolismo , Feminino , Masculino , População Branca/genética , Autopsia , Expressão Gênica/genética , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/etnologia , Idoso , Pessoa de Meia-Idade
8.
Science ; 384(6698): eadh0829, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38781368

RESUMO

Neuropsychiatric genome-wide association studies (GWASs), including those for autism spectrum disorder and schizophrenia, show strong enrichment for regulatory elements in the developing brain. However, prioritizing risk genes and mechanisms is challenging without a unified regulatory atlas. Across 672 diverse developing human brains, we identified 15,752 genes harboring gene, isoform, and/or splicing quantitative trait loci, mapping 3739 to cellular contexts. Gene expression heritability drops during development, likely reflecting both increasing cellular heterogeneity and the intrinsic properties of neuronal maturation. Isoform-level regulation, particularly in the second trimester, mediated the largest proportion of GWAS heritability. Through colocalization, we prioritized mechanisms for about 60% of GWAS loci across five disorders, exceeding adult brain findings. Finally, we contextualized results within gene and isoform coexpression networks, revealing the comprehensive landscape of transcriptome regulation in development and disease.


Assuntos
Processamento Alternativo , Encéfalo , Regulação da Expressão Gênica no Desenvolvimento , Transtornos Mentais , Humanos , Atlas como Assunto , Transtorno do Espectro Autista/genética , Encéfalo/metabolismo , Encéfalo/crescimento & desenvolvimento , Encéfalo/embriologia , Redes Reguladoras de Genes , Estudo de Associação Genômica Ampla , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Locos de Características Quantitativas , Esquizofrenia/genética , Transcriptoma , Transtornos Mentais/genética
9.
Nat Commun ; 15(1): 4220, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760338

RESUMO

When somatic cells acquire complex karyotypes, they often are removed by the immune system. Mutant somatic cells that evade immune surveillance can lead to cancer. Neurons with complex karyotypes arise during neurotypical brain development, but neurons are almost never the origin of brain cancers. Instead, somatic mutations in neurons can bring about neurodevelopmental disorders, and contribute to the polygenic landscape of neuropsychiatric and neurodegenerative disease. A subset of human neurons harbors idiosyncratic copy number variants (CNVs, "CNV neurons"), but previous analyses of CNV neurons are limited by relatively small sample sizes. Here, we develop an allele-based validation approach, SCOVAL, to corroborate or reject read-depth based CNV calls in single human neurons. We apply this approach to 2,125 frontal cortical neurons from a neurotypical human brain. SCOVAL identifies 226 CNV neurons, which include a subclass of 65 CNV neurons with highly aberrant karyotypes containing whole or substantial losses on multiple chromosomes. Moreover, we find that CNV location appears to be nonrandom. Recurrent regions of neuronal genome rearrangement contain fewer, but longer, genes.


Assuntos
Variações do Número de Cópias de DNA , Mosaicismo , Neurônios , Humanos , Neurônios/metabolismo , Alelos
10.
Nat Commun ; 15(1): 3342, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38688917

RESUMO

The polygenic architecture of schizophrenia implicates several molecular pathways involved in synaptic function. However, it is unclear how polygenic risk funnels through these pathways to translate into syndromic illness. Using tensor decomposition, we analyze gene co-expression in the caudate nucleus, hippocampus, and dorsolateral prefrontal cortex of post-mortem brain samples from 358 individuals. We identify a set of genes predominantly expressed in the caudate nucleus and associated with both clinical state and genetic risk for schizophrenia that shows dopaminergic selectivity. A higher polygenic risk score for schizophrenia parsed by this set of genes predicts greater dopamine synthesis in the striatum and greater striatal activation during reward anticipation. These results translate dopamine-linked genetic risk variation into in vivo neurochemical and hemodynamic phenotypes in the striatum that have long been implicated in the pathophysiology of schizophrenia.


Assuntos
Corpo Estriado , Dopamina , Esquizofrenia , Humanos , Dopamina/metabolismo , Dopamina/biossíntese , Esquizofrenia/genética , Esquizofrenia/metabolismo , Masculino , Feminino , Corpo Estriado/metabolismo , Adulto , Núcleo Caudado/metabolismo , Transdução de Sinais , Pessoa de Meia-Idade , Hipocampo/metabolismo , Herança Multifatorial , Predisposição Genética para Doença , Córtex Pré-Frontal Dorsolateral/metabolismo , Recompensa
11.
Res Sq ; 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38496574

RESUMO

Recent GWASs have demonstrated that comorbid disorders share genetic liabilities. But whether and how these shared liabilities can be used for the classification and differentiation of comorbid disorders remains unclear. In this study, we use polygenic risk scores (PRSs) estimated from 42 comorbid traits and the deep neural networks (DNN) architecture to classify and differentiate schizophrenia (SCZ), bipolar disorder (BIP) and major depressive disorder (MDD). Multiple PRSs were obtained for individuals from the schizophrenia (SCZ) (cases = 6,317, controls = 7,240), bipolar disorder (BIP) (cases = 2,634, controls 4,425) and major depressive disorder (MDD) (cases = 1,704, controls = 3,357) datasets, and classification models were constructed with and without the inclusion of PRSs of the target (SCZ, BIP or MDD). Models with the inclusion of target PRSs performed well as expected. Surprisingly, we found that SCZ could be classified with only the PRSs from 35 comorbid traits (not including the target SCZ and directly related traits) (accuracy 0.760 ± 0.007, AUC 0.843 ± 0.005). Similar results were obtained for BIP (33 traits, accuracy 0.768 ± 0.007, AUC 0.848 ± 0.009), and MDD (36 traits, accuracy 0.794 ± 0.010, AUC 0.869 ± 0.004). Furthermore, these PRSs from comorbid traits alone could effectively differentiate unaffected controls, SCZ, BIP, and MDD patients (average categorical accuracy 0.861 ± 0.003, average AUC 0.961 ± 0.041). These results suggest that the shared liabilities from comorbid traits alone may be sufficient to classify SCZ, BIP and MDD. More importantly, these results imply that a data-driven and objective diagnosis and differentiation of SCZ, BIP and MDD may be feasible.

12.
medRxiv ; 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38464193

RESUMO

Respiratory syncytial virus (RSV) primarily affects infants, young children, and older adults, with seasonal outbreaks in the United States (US) peaking around December or January. Despite the limited implementation of non-pharmaceutical interventions, disrupted RSV activity was observed in different countries following the 2009 influenza pandemic, suggesting possible viral interference from influenza. Although interactions between the influenza A/H1N1 pandemic virus and RSV have been demonstrated at an individual level, it remains unclear whether the disruption of RSV activity at the population level can be attributed to viral interference. In this work, we first evaluated changes in the timing and intensity of RSV activity across 10 regions of the US in the years following the 2009 influenza pandemic using dynamic time warping. We observed a reduction in RSV activity following the pandemic, which was associated with intensity of influenza activity in the region. We then developed an age-stratified, two-pathogen model to examine various hypotheses regarding viral interference mechanisms. Based on our model estimates, we identified three mechanisms through which influenza infections could interfere with RSV: 1) reducing susceptibility to RSV coinfection; 2) shortening the RSV infectious period in coinfected individuals; and 3) reducing RSV infectivity in coinfection. Our study offers statistical support for the occurrence of atypical RSV seasons following the 2009 influenza pandemic. Our work also offers new insights into the mechanisms of viral interference that contribute to disruptions in RSV epidemics and provides a model-fitting framework that enables the analysis of new surveillance data for studying viral interference at the population level.

13.
bioRxiv ; 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38463979

RESUMO

Importance: Habenula (Hb) pathophysiology is involved in many neuropsychiatric disorders, including schizophrenia. Deep brain stimulation and pharmacological targeting of the Hb are emerging as promising therapeutic treatments. However, little is known about the cell type-specific transcriptomic organization of the human Hb or how it is altered in schizophrenia. Objective: To define the molecular neuroanatomy of the human habenula and identify transcriptomic changes in individuals with schizophrenia compared to neurotypical controls. Design Setting and Participants: This study utilized Hb-enriched postmortem human brain tissue. Single nucleus RNA-sequencing (snRNA-seq) and single molecule fluorescent in situ hybridization (smFISH) experiments were conducted to identify molecularly defined Hb cell types and map their spatial location (n=3-7 donors). Bulk RNA-sequencing and cell type deconvolution were used to investigate transcriptomic changes in Hb-enriched tissue from 35 individuals with schizophrenia and 33 neurotypical controls. Gene expression changes associated with schizophrenia in the Hb were compared to those previously identified in the dorsolateral prefrontal cortex (DLPFC), hippocampus, and caudate. Main Outcomes and Measures: Semi-supervised snRNA-seq cell type clustering. Transcript visualization and quantification of smFISH probes. Bulk RNA-seq cell type deconvolution using reference snRNA-seq data. Schizophrenia-associated gene differential expression analysis adjusting for Hb and thalamus fractions, RNA degradation-associated quality surrogate variables, and other covariates. Cross-brain region schizophrenia-associated gene expression comparison. Results: snRNA-seq identified 17 cell type clusters across 16,437 nuclei, including 3 medial and 7 lateral Hb populations. Cell types were conserved with those identified in a rodent model. smFISH for cell type marker genes validated snRNA-seq Hb cell types and depicted the spatial organization of subpopulations. Bulk RNA-seq analyses yielded 45 schizophrenia-associated differentially expressed genes (FDR < 0.05), with 32 (71%) unique to Hb-enriched tissue. Conclusions: These results identify topographically organized cell types with distinct molecular signatures in the human Hb. They further demonstrate unique transcriptomic changes in the epithalamus associated with schizophrenia, thereby providing molecular insights into the role of Hb in neuropsychiatric disorders.

14.
J Infect Dis ; 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38502711

RESUMO

BACKGROUND: Pneumococcal conjugate vaccines (PCVs) provide strong direct protection in children, while limited data are available on their indirect effect on mortality among older age groups. This multi-country study aimed to assess the population-level impact of pediatric PCVs on all-cause pneumonia mortality among ≥5 years of age, and invasive pneumococcal disease (IPD) cases in Chile. METHODS: Demographic and mortality data from Argentina, Brazil, Chile, Colombia, and Mexico were collected considering the ≥ 5-year-old population, from 2000-2019, with 1,795,789 deaths due to all-cause pneumonia. IPD cases in Chile were also evaluated. Time series models were employed to evaluate changes in all-cause pneumonia deaths during the post-vaccination period, with other causes of death used as synthetic controls for unrelated temporal trends. RESULTS: No significant change in death rates due to all-cause pneumonia was detected following PCV introduction among most age groups and countries. The proportion of IPD cases caused by vaccine serotypes decreased from 29% (2012) to 6% (2022) among ≥65 years in Chile. DISCUSSION: While an effect of PCV against pneumonia deaths (a broad clinical definition that may not be specific enough to measure indirect effects) was not detected, evidence of indirect PCV impact was observed among vaccine-type-specific IPD cases.

15.
Psychol Med ; 54(8): 1876-1885, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38305128

RESUMO

BACKGROUND: Previous evidence suggests that early life complications (ELCs) interact with polygenic risk for schizophrenia (SCZ) in increasing risk for the disease. However, no studies have investigated this interaction on neurobiological phenotypes. Among those, anomalous emotion-related brain activity has been reported in SCZ, even if evidence of its link with SCZ-related genetic risk is not solid. Indeed, it is possible this relationship is influenced by non-genetic risk factors. Thus, this study investigated the interaction between SCZ-related polygenic risk and ELCs on emotion-related brain activity. METHODS: 169 healthy participants (HP) in a discovery and 113 HP in a replication sample underwent functional magnetic resonance imaging (fMRI) during emotion processing, were categorized for history of ELCs and genome-wide genotyped. Polygenic risk scores (PRSs) were computed using SCZ-associated variants considering the most recent genome-wide association study. Furthermore, 75 patients with SCZ also underwent fMRI during emotion processing to verify consistency of their brain activity patterns with those associated with risk factors for SCZ in HP. RESULTS: Results in the discovery and replication samples indicated no effect of PRSs, but an interaction between PRS and ELCs in left ventrolateral prefrontal cortex (VLPFC), where the greater the activity, the greater PRS only in presence of ELCs. Moreover, SCZ had greater VLPFC response than HP. CONCLUSIONS: These results suggest that emotion-related VLPFC response lies in the path from genetic and non-genetic risk factors to the clinical presentation of SCZ, and may implicate an updated concept of intermediate phenotype considering early non-genetic factors of risk for SCZ.


Assuntos
Emoções , Imageamento por Ressonância Magnética , Herança Multifatorial , Esquizofrenia , Humanos , Esquizofrenia/fisiopatologia , Esquizofrenia/genética , Esquizofrenia/diagnóstico por imagem , Masculino , Feminino , Adulto , Emoções/fisiologia , Adulto Jovem , Estudo de Associação Genômica Ampla , Fatores de Risco , Predisposição Genética para Doença , Córtex Pré-Frontal/fisiopatologia , Córtex Pré-Frontal/diagnóstico por imagem , Encéfalo/fisiopatologia , Encéfalo/diagnóstico por imagem , Voluntários Saudáveis , Pessoa de Meia-Idade , Estratificação de Risco Genético
16.
bioRxiv ; 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38328094

RESUMO

DNA methylation (DNAm), a crucial epigenetic mark, plays a key role in gene regulation, mammalian development, and various human diseases. Single-cell technologies enable the profiling of DNAm states at cytosines within the DNA sequence of individual cells, but they often suffer from limited coverage of CpG sites. In this study, we introduce scMeFormer, a transformer-based deep learning model designed to impute DNAm states for each CpG site in single cells. Through comprehensive evaluations, we demonstrate the superior performance of scMeFormer compared to alternative models across four single-nucleus DNAm datasets generated by distinct technologies. Remarkably, scMeFormer exhibits high-fidelity imputation, even when dealing with significantly reduced coverage, as low as 10% of the original CpG sites. Furthermore, we applied scMeFormer to a single-nucleus DNAm dataset generated from the prefrontal cortex of four schizophrenia patients and four neurotypical controls. This enabled the identification of thousands of differentially methylated regions associated with schizophrenia that would have remained undetectable without imputation and added granularity to our understanding of epigenetic alterations in schizophrenia within specific cell types. Our study highlights the power of deep learning in imputing DNAm states in single cells, and we expect scMeFormer to be a valuable tool for single-cell DNAm studies.

17.
Sci Rep ; 14(1): 3291, 2024 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-38332235

RESUMO

Primary human trophoblast stem cells (TSCs) and TSCs derived from human pluripotent stem cells (hPSCs) can potentially model placental processes in vitro. Yet, the pluripotent states and factors involved in the differentiation of hPSCs to TSCs remain poorly understood. In this study, we demonstrate that the primed pluripotent state can generate TSCs by activating pathways such as Epidermal Growth Factor (EGF) and Wingless-related integration site (WNT), and by suppressing tumor growth factor beta (TGFß), histone deacetylases (HDAC), and Rho-associated protein kinase (ROCK) signaling pathways, all without the addition of exogenous Bone morphogenetic protein 4 (BMP4)-a condition we refer to as the TS condition. We characterized this process using temporal single-cell RNA sequencing to compare TS conditions with differentiation protocols involving BMP4 activation alone or BMP4 activation in conjunction with WNT inhibition. The TS condition consistently produced a stable, proliferative cell type that closely mimics first-trimester placental cytotrophoblasts, marked by the activation of endogenous retroviral genes and the absence of amnion expression. This was observed across multiple cell lines, including various primed induced pluripotent stem cell (iPSC) and embryonic stem cell (ESC) lines. Primed-derived TSCs can proliferate for over 30 passages and further specify into multinucleated syncytiotrophoblasts and extravillous trophoblast cells. Our research establishes that the differentiation of primed hPSCs to TSC under TS conditions triggers the induction of TMSB4X, BMP5/7, GATA3, and TFAP2A without progressing through a naive state. These findings propose that the primed hPSC state is part of a continuum of potency with the capacity to differentiate into TSCs through multiple routes.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes , Humanos , Feminino , Gravidez , Placenta , Diferenciação Celular/genética , Trofoblastos/metabolismo , Proteína Morfogenética Óssea 5/metabolismo
18.
bioRxiv ; 2024 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-38293210

RESUMO

DNA methylation (DNAm) is essential for brain development and function and potentially mediates the effects of genetic risk variants underlying brain disorders. We present INTERACT, a transformer-based deep learning model to predict regulatory variants impacting DNAm levels in specific brain cell types, leveraging existing single-nucleus DNAm data from the human brain. We show that INTERACT accurately predicts cell type-specific DNAm profiles, achieving an average area under the Receiver Operating Characteristic curve of 0.98 across cell types. Furthermore, INTERACT predicts cell type-specific DNAm regulatory variants, which reflect cellular context and enrich the heritability of brain-related traits in relevant cell types. Importantly, we demonstrate that incorporating predicted variant effects and DNAm levels of CpG sites enhances the fine mapping for three brain disorders-schizophrenia, depression, and Alzheimer's disease-and facilitates mapping causal genes to particular cell types. Our study highlights the power of deep learning in identifying cell type-specific regulatory variants, which will enhance our understanding of the genetics of complex traits.

19.
Med Care ; 62(3): 196-204, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38284412

RESUMO

DESIGN: Retrospective cohort study. OBJECTIVE: We sought to examine whether disruptions in follow-up intervals contributed to hypertension control. BACKGROUND: Disruptions in health care were widespread during the coronavirus disease 2019 pandemic. PATIENTS AND METHODS: We identified a cohort of individuals with hypertension in both prepandemic (March 2019-February 2020) and pandemic periods (March 2020-February 2022) in the Veterans Health Administration. First, we calculated follow-up intervals between the last prepandemic and first pandemic blood pressure measurement during a primary care clinic visit, and between measurements in the prepandemic period. Next, we estimated the association between the maintenance of (or achieving) hypertension control and the period using generalized estimating equations. We assessed associations between follow-up interval and control separately for periods. Finally, we evaluated the interaction between period and follow-up length. RESULTS: A total of 1,648,424 individuals met the study inclusion criteria. Among individuals with controlled hypertension, the likelihood of maintaining control was lower during the pandemic versus the prepandemic (relative risk: 0.93; 95% CI: 0.93, 0.93). Longer follow-up intervals were associated with a decreasing likelihood of maintaining controlled hypertension in both periods. Accounting for follow-up intervals, the likelihood of maintaining control was 2% lower during the pandemic versus the prepandemic. For uncontrolled hypertension, the likelihood of gaining control was modestly higher during the pandemic versus the prepandemic (relative risk: 1.01; 95% CI: 1.01, 1.01). The likelihood of gaining control decreased with follow-up length during the prepandemic but not pandemic. CONCLUSIONS: During the pandemic, longer follow-up between measurements contributed to the lower likelihood of maintaining control. Those with uncontrolled hypertension were modestly more likely to gain control in the pandemic.


Assuntos
COVID-19 , Hipertensão , Veteranos , Humanos , Estudos de Coortes , Pandemias , Estudos Retrospectivos , COVID-19/epidemiologia , Hipertensão/epidemiologia
20.
Epidemiology ; 35(2): 130-136, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37963353

RESUMO

BACKGROUND: When a randomized controlled trial fails to demonstrate statistically significant efficacy against the primary endpoint, a potentially costly new trial would need to be conducted to receive licensure. Incorporating data from previous trials might allow for more efficient follow-up trials to demonstrate efficacy, speeding the availability of effective vaccines. METHODS: Based on the outcomes from a failed trial of a maternal vaccine against respiratory syncytial virus (RSV), we simulated data for a new Bayesian group-sequential trial. We analyzed the data either ignoring data from the previous trial (i.e., weakly informative prior distributions) or using prior distributions incorporating the historical data into the analysis. We evaluated scenarios where efficacy in the new trial was the same, greater than, or less than that in the original trial. For each scenario, we evaluated the statistical power and type I error rate for estimating the vaccine effect following interim analyses. RESULTS: When we used a stringent threshold to control the type I error rate, analyses incorporating historical data had a small advantage over trials that did not. If control of type I error is less important (e.g., in a postlicensure evaluation), the incorporation of historical data can provide a substantial boost in efficiency. CONCLUSIONS: Due to the need to control the type I error rate in trials used to license a vaccine, incorporating historical data provides little additional benefit in terms of stopping the trial early. However, these statistical approaches could be promising in evaluations that use real-world evidence following licensure.


Assuntos
Vírus Sinciciais Respiratórios , Vacinas , Humanos , Teorema de Bayes , Ensaios Clínicos Controlados Aleatórios como Assunto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...