Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Biomolecules ; 13(9)2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37759792

RESUMO

Systemic juvenile idiopathic arthritis (SJIA) is a severe rheumatic disease in children. It is a subgroup of juvenile idiopathic arthritis (JIA; MIM #604302), which is the most common rheumatic disease in children. The diagnosis of SJIA often comes with a significant delay, and the classification between autoinflammatory and autoimmune disease is still discussed. In this study, we analyzed the immunological responses of patients with SJIA, using human proteome arrays presenting immobilized recombinantly expressed human proteins, to analyze the involvement of autoantibodies in SJIA. Results from group comparisons show several differentially reactive antigens involved in inflammatory processes. Intriguingly, many of the identified antigens had a high reactivity against proteins involved in the NF-κB pathway, and it is also notable that many of the detected DIRAGs are described as dysregulated in rheumatoid arthritis. Our data highlight novel proteins and pathways potentially dysregulated in SJIA and offer a unique approach to unraveling the underlying disease pathogenesis in this chronic arthropathy.


Assuntos
Artrite Juvenil , Artrite Reumatoide , Doenças Reumáticas , Criança , Humanos , Autoanticorpos , NF-kappa B
2.
Front Immunol ; 14: 1165936, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37492569

RESUMO

Circulating antibody-secreting cells are present in the peripheral blood of healthy individuals reflecting the continued activity of the humoral immune system. Antibody-secreting cells typically express CD27. Here we describe and characterize a small population of antibody-secreting class switched CD19+CD43+ B cells that lack expression of CD27 in the peripheral blood of healthy subjects. In this study, we characterized CD27-CD43+ cells. We demonstrate that class-switched CD27-CD43+ B cells possess characteristics of conventional plasmablasts as they spontaneously secrete antibodies, are morphologically similar to antibody-secreting cells, show downregulation of B cell differentiation markers, and have a gene expression profile related to conventional plasmablasts. Despite these similarities, we observed differences in IgA and IgG subclass distribution, expression of homing markers, replication history, frequency of somatic hypermutation, immunoglobulin repertoire, gene expression related to Toll-like receptors, cytokines, and cytokine receptors, and antibody response to vaccination. Their frequency is altered in immune-mediated disorders. Conclusion: we characterized CD27-CD43+ cells as antibody-secreting cells with differences in function and homing potential as compared to conventional CD27+ antibody-secreting cells.


Assuntos
Linfócitos B , Plasmócitos , Fenótipo , Imunoglobulina G , Células Produtoras de Anticorpos
3.
Methods Mol Biol ; 2628: 413-438, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36781800

RESUMO

Antibody (AB) testing or serotesting for reactive ABs against antigenic proteins is broadly used. Parallel examination of many antigens is of high interest to identify autoantibodies (AAB) or differential antigenic reactivities in many biological settings like allergy and infectious autoimmune, cancerous, or systemic disease. The resulting AAB profiles can be used for diagnosis, prognosis, and monitoring of such conditions. Protein microarrays have been used for AB profiling over the past decade but show some significant limitations which make them unsuitable for clinical applications. Alternative multiplexing platforms such as bead arrays were shown to provide a versatile tool for the confirmation and efficient analysis of high numbers of biological samples. Luminex' bead-based xMAP technology combines advantages such as multiplexing and lower demand for sample volume and at the same time overcomes the challenges of microarrays. It works faster, shows better antigen stability, is more reproducible, and allows the analysis of up to 500 analytes in one sample well. In this chapter we introduce our established workflow for the use of the xMAP technology for AB profiling including an overview of the method principle and protocols for the covalent immobilization of proteins to the MagPlex beads, confirmation of protein coupling, the execution of a multiplexed bead-based protein immunoassay, and subsequent data handling.


Assuntos
Antígenos , Soro , Testes Imunológicos , Autoanticorpos , Imunoensaio/métodos
4.
Methods Mol Biol ; 2628: 505-533, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36781804

RESUMO

Antigenic peptides are commonly used in serological test settings such as enzyme-linked immunosorbent assays (ELISA) to determine reactive antibodies (ABs) from serum or plasma samples. The use of synthetic peptides provides advantages like lower production effort and easier incorporation of specific chemical modifications compared to full-length antigenic proteins. Multiplexed antibody (AB) profiling methods such as microarray technologies enable the simultaneous identification of multiple novel biomarkers for the use in early disease diagnostics, vaccine development, or monitoring of immune responses. Despite various benefits they still show major limitations which can be overcome with bead-based assay technologies like the multi-analyte profiling (xMAP) technology developed by Luminex. In this chapter we introduce our established workflow for AB profiling with a multiplexed bead-based peptide immunoassay. The workflow is based on copper-catalyzed click chemistry to immobilize designed synthetic peptides onto uniquely color-coded paramagnetic beads in an orientation-specific manner. The individual peptide-coupled beads can be distinguished by their unique emission spectra during readout in the xMAP instrument and therefore allow testing of up to 500 different antigenic peptides in one multiplexed reaction. The multistep process described in this chapter is divided into separate sections for peptide design, coupling of functionalized peptides to MagPlex beads via click chemistry, confirmation of successful peptide immobilization, processing of serum or plasma samples, or preferably purified IgG thereof, with the multiplexed bead-based peptide immunoassay and subsequent data export and analysis.


Assuntos
Anticorpos , Soro , Imunoensaio/métodos , Ensaio de Imunoadsorção Enzimática/métodos , Soro/química , Peptídeos
5.
Int J Mol Sci ; 24(2)2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36674927

RESUMO

Studies on tumor-associated antigens in brain tumors are sparse. There is scope for enhancing our understanding of molecular pathology, in order to improve on existing forms, and discover new forms, of treatment, which could be particularly relevant to immuno-oncological strategies. To elucidate immunological differences, and to provide another level of biological information, we performed antibody profiling, based on a high-density protein array (containing 8173 human transcripts), using IgG isolated from the sera of n = 12 preoperative and n = 16 postoperative glioblastomas, n = 26 preoperative and n = 29 postoperative meningiomas, and n = 27 healthy, cancer-free controls. Differentially reactive antigens were compared to gene expression data from an alternate public GBM data set from OncoDB, and were analyzed using the Reactome pathway browser. Protein array analysis identified approximately 350-800 differentially reactive antigens, and revealed different antigen profiles in the glioblastomas and meningiomas, with approximately 20-30%-similar and 10-15%-similar antigens in preoperative and postoperative sera, respectively. Seroreactivity did not correlate with OncoDB-derived gene expression. Antigens in the preoperative glioblastoma sera were enriched for signaling pathways, such as signaling by Rho-GTPases, COPI-mediated anterograde transport and vesicle-mediated transport, while the infectious disease, SRP-dependent membrane targeting cotranslational proteins were enriched in the meningiomas. The pre-vs. postoperative seroreactivity in the glioblastomas was enriched for antigens, e.g., platelet degranulation and metabolism of lipid pathways; in the meningiomas, the antigens were enriched in infectious diseases, metabolism of amino acids and derivatives, and cell cycle. Antibody profiling in both tumor entities elucidated several hundred antigens and characteristic signaling pathways that may provide new insights into molecular pathology and may be of interest for the development of new treatment strategies.


Assuntos
Glioblastoma , Neoplasias Meníngeas , Meningioma , Humanos , Meningioma/genética , Anticorpos , Antígenos de Neoplasias , Neoplasias Meníngeas/genética
6.
Arthritis Rheumatol ; 75(5): 826-841, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36409585

RESUMO

OBJECTIVE: Systemic juvenile idiopathic arthritis (JIA) features characteristics of autoinflammation and autoimmunity, culminating in chronic arthritis. In this study, we hypothesized that aberrant or incomplete polarization of T helper cells contributes to disease pathology. METHODS: Cells or serum samples were obtained from healthy controls (n = 72) and systemic JIA patients (n = 171). Isolated naive T helper cells were cultured under Th1, Th17, and T follicular helper (Tfh) or T peripheral helper (Tph)-polarizing conditions and were partly cocultured with allogenic memory B cells. Cell samples were then analyzed for surface marker, transcription factor, and cytokine expression, as well as plasmablast generation. Serum samples were subjected to multiplexed bead and self-antigen arrays and enzyme-linked immunosorbent assays, and all data were compared to retrospective RNA profiling analyses. RESULTS: Differentiation of systemic JIA-naive T helper cells toward Th1 cells resulted in low expression levels of interferon-γ (IFNγ) and eomesodermin, which was associated in part with disease duration. In contrast, developing Th1 cells in patients with systemic JIA were found to produce elevated levels of interleukin-21 (IL-21), which negatively correlated with cellular expression of IFNγ and eomesodermin. In both in vitro and ex vivo analyses, IL-21 together with programmed cell death 1 (PD-1), inducible T cell costimulator (ICOS), and CXCR5 expression induced naive T helper cells from systemic JIA patients to polarize toward a Tfh/Tph cell phenotype. Retrospective analysis of whole-blood RNA-sequencing data demonstrated that Bcl-6, a master transcription factor in Tfh/Tph cell differentiation, was overexpressed specifically in patients with systemic JIA. Naive T helper cells from systemic JIA patients which were stimulated in vitro promoted B cellular plasmablast generation, and self-antigen array data indicated that IgG reactivity profiles of patients with systemic JIA differed from those of healthy controls. CONCLUSION: In the pathogenesis of systemic JIA, skewing of naive T helper cell differentiation toward a Tfh/Tph cell phenotype may represent an echo of autoimmunity, which may indicate the mechanisms driving progression toward chronic destructive arthritis.


Assuntos
Artrite Juvenil , Humanos , Estudos Retrospectivos , Linfócitos T Auxiliares-Indutores , Interleucinas , Células Th17 , Interferon gama/metabolismo , Diferenciação Celular , Autoantígenos/metabolismo , Fatores de Transcrição/metabolismo , Linfócitos T CD4-Positivos
7.
Biotechniques ; 72(4): 134-142, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35234537

RESUMO

ELISA is the current standard for (auto)antibody diagnostics. Once established, ELISA protocols can be easily adapted for novel antigens; however, peptide-based protocols are rarely available. Herein the authors describe the results of a technical investigation of an indirect ELISA protocol using peptides conjugated onto a protein carrier based on click chemistry and immobilized in standard plastics. The authors compared this approach with the common biotin-avidin system and obtained a slightly improved limit of detection for purified IgG of 25-100 ng/well compared with 25-1000 ng/well. Reproducibility and stability of the methodological approach were conducted for further technical characterization. Indirect ELISA using immunoreactive peptides conjugated to bovine serum albumin offers a reliable method that is complementary to standard plastics and plate readers.


Assuntos
Química Click , Peptídeos , Biotina/química , Ensaio de Imunoadsorção Enzimática/métodos , Peptídeos/metabolismo , Plásticos , Reprodutibilidade dos Testes
8.
Molecules ; 27(4)2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35209238

RESUMO

For the identification of antigenic protein biomarkers for rheumatoid arthritis (RA), we conducted IgG profiling on high density protein microarrays. Plasma IgG of 96 human samples (healthy controls, osteoarthritis, seropositive and seronegative RA, n = 24 each) and time-series plasma of a pristane-induced arthritis (PIA) rat model (n = 24 total) were probed on AIT's 16k protein microarray. To investigate the analogy of underlying disease pathways, differential reactivity analysis was conducted. A total of n = 602 differentially reactive antigens (DIRAGs) at a significance cutoff of p < 0.05 were identified between seropositive and seronegative RA for the human samples. Correlation with the clinical disease activity index revealed an inverse correlation of antibodies against self-proteins found in pathways relevant for antigen presentation and immune regulation. The PIA model showed n = 1291 significant DIRAGs within acute disease. Significant DIRAGs for (I) seropositive, (II) seronegative and (III) PIA were subjected to the Reactome pathway browser which also revealed pathways relevant for antigen presentation and immune regulation; of these, seven overlapping pathways had high significance. We therefore conclude that the PIA model reflects the biological similarities of the disease pathogenesis. Our data show that protein array analysis can elucidate biological differences and pathways relevant in disease as well be a useful additional layer of omics information.


Assuntos
Artrite Reumatoide/diagnóstico , Artrite Reumatoide/etiologia , Autoanticorpos/imunologia , Autoimunidade , Biomarcadores , Animais , Autoanticorpos/sangue , Autoantígenos/imunologia , Biologia Computacional/métodos , Modelos Animais de Doenças , Suscetibilidade a Doenças/imunologia , Humanos , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Análise Serial de Proteínas , Ratos , Índice de Gravidade de Doença
9.
Biotechnol J ; 17(5): e2100422, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35078277

RESUMO

The receptor binding domain (RBD) of the SARS-CoV-2 spike (S)-protein is a prime target of virus-neutralizing antibodies present in convalescent sera of COVID-19 patients and thus is considered a key antigen for immunosurveillance studies and vaccine development. Although recombinant expression of RBD has been achieved in several eukaryotic systems, mammalian cells have proven particularly useful. The authors aimed to optimize RBD produced in HEK293-6E cells towards a stable homogeneous preparation and addressed its O-glycosylation as well as the unpaired cysteine residue 538 in the widely used RBD (319-541) sequence. The authors found that an intact O-glycosylation site at T323 is highly relevant for the expression and maintenance of RBD as a monomer. Furthermore, it was shown that deletion or substitution of the unpaired cysteine residue C538 reduces the intrinsic propensity of RBD to form oligomeric aggregates, concomitant with an increased yield of the monomeric form of the protein. Bead-based and enzyme-linked immunosorbent assays utilizing these optimized RBD variants displayed excellent performance with respect to the specific detection of even low levels of SARS-CoV-2 antibodies in convalescent sera. Hence, these RBD variants could be instrumental for the further development of serological SARS-CoV-2 tests and inform the design of RBD-based vaccine candidates.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/terapia , Cisteína , Células HEK293 , Humanos , Imunização Passiva , Mamíferos , Ligação Proteica , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Soroterapia para COVID-19
10.
Front Plant Sci ; 12: 747500, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34646292

RESUMO

The receptor binding domain (RBD) of the SARS-CoV-2 spike protein plays a key role in the virus-host cell interaction, and viral infection. The RBD is a major target for neutralizing antibodies, whilst recombinant RBD is commonly used as an antigen in serological assays. Such assays are essential tools to gain control over the pandemic and detect the extent and durability of an immune response in infected or vaccinated populations. Transient expression in plants can contribute to the fast production of viral antigens, which are required by industry in high amounts. Whilst plant-produced RBDs are glycosylated, N-glycan modifications in plants differ from humans. This can give rise to the formation of carbohydrate epitopes that can be recognized by anti-carbohydrate antibodies present in human sera. For the performance of serological tests using plant-produced recombinant viral antigens, such cross-reactive carbohydrate determinants (CCDs) could result in false positives. Here, we transiently expressed an RBD variant in wild-type and glycoengineered Nicotiana benthamiana leaves and characterized the impact of different plant-specific N-glycans on RBD reactivity in serological assays. While the overall performance of the different RBD glycoforms was comparable to each other and to a human cell line produced RBD, there was a higher tendency toward false positive results with sera containing allergy-related CCD-antibodies when an RBD carrying ß1,2-xylose and core α1,3-fucose was used. These rare events could be further minimized by pre-incubating sera from allergic individuals with a CCD-inhibitor. Thereby, false positive signals obtained from anti-CCD antibodies, could be reduced by 90%, on average.

11.
Curr Issues Mol Biol ; 43(3): 1419-1435, 2021 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-34698107

RESUMO

Early diagnosis of colorectal cancer (CRC) is of high importance as prognosis depends on tumour stage at the time of diagnosis. Detection of tumour-specific DNA methylation marks in cfDNA has several advantages over other approaches and has great potential for solving diagnostic needs. We report here the identification of DNA methylation biomarkers for CRC and give insights in our methylation-sensitive restriction enzyme coupled qPCR (MSRE-qPCR) system. Targeted microarrays were used to investigate the DNA methylation status of 360 cancer-associated genes. Validation was done by qPCR-based approaches. A focus was on investigating marker performance in cfDNA from 88 patients (44 CRC, 44 controls). Finally, the workflow was scaled-up to perform 180plex analysis on 110 cfDNA samples, to identify a DNA methylation signature for advanced colonic adenomas (AA). A DNA methylation signature (n = 44) was deduced from microarray experiments and confirmed by quantitative methylation-specific PCR (qMSP) and by MSRE-qPCR, providing for six genes' single areas under the curve (AUC) values of >0.85 (WT1, PENK, SPARC, GDNF, TMEFF2, DCC). A subset of the signatures can be used for patient stratification and therapy monitoring for progressed CRC with liver metastasis using cfDNA. Furthermore, we identified a 35-plex classifier for the identification of AAs with an AUC of 0.80.


Assuntos
Biomarcadores Tumorais , Ácidos Nucleicos Livres , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/genética , Metilação de DNA , DNA de Neoplasias , Biópsia Líquida/métodos , Biologia Computacional/métodos , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Biópsia Líquida/normas , Metástase Neoplásica , Curva ROC
12.
Front Plant Sci ; 12: 689104, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34211491

RESUMO

Nicotiana benthamiana is used worldwide as production host for recombinant proteins. Many recombinant proteins such as monoclonal antibodies, growth factors or viral antigens require posttranslational modifications like glycosylation for their function. Here, we transiently expressed different variants of the glycosylated receptor binding domain (RBD) from the SARS-CoV-2 spike protein in N. benthamiana. We characterized the impact of variations in RBD-length and posttranslational modifications on protein expression, yield and functionality. We found that a truncated RBD variant (RBD-215) consisting of amino acids Arg319-Leu533 can be efficiently expressed as a secreted soluble protein. Purified RBD-215 was mainly present as a monomer and showed binding to the conformation-dependent antibody CR3022, the cellular receptor angiotensin converting enzyme 2 (ACE2) and to antibodies present in convalescent sera. Expression of RBD-215 in glycoengineered ΔXT/FT plants resulted in the generation of complex N-glycans on both N-glycosylation sites. While site-directed mutagenesis showed that the N-glycans are important for proper RBD folding, differences in N-glycan processing had no effect on protein expression and function.

13.
ACS Appl Mater Interfaces ; 13(23): 27645-27655, 2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34081862

RESUMO

A combined approach to signal enhancement in fluorescence affinity biosensors and assays is reported. It is based on the compaction of specifically captured target molecules at the sensor surface followed by optical probing with a tightly confined surface plasmon (SP) field. This concept is utilized by using a thermoresponsive hydrogel (HG) binding matrix that is prepared from a terpolymer derived from poly(N-isopropylacrylamide) (pNIPAAm) and attached to a metallic sensor surface. Epi-illumination fluorescence and SP-enhanced total internal reflection fluorescence readouts of affinity binding events are performed to spatially interrogate the fluorescent signal in the direction parallel and perpendicular to the sensor surface. The pNIPAAm-based HG binding matrix is arranged in arrays of sensing spots and employed for the specific detection of human IgG antibodies against the Epstein-Barr virus (EBV). The detection is performed in diluted human plasma or with isolated human IgG by using a set of peptide ligands mapping the epitope of the EBV nuclear antigen. Alkyne-terminated peptides were covalently coupled to the pNIPAAm-based HG carrying azide moieties. Importantly, using such low-molecular-weight ligands allowed preserving the thermoresponsive properties of the pNIPAAm-based architecture, which was not possible for amine coupling of regular antibodies that have a higher molecular weight.


Assuntos
Resinas Acrílicas/química , Técnicas Biossensoriais/métodos , Infecções por Vírus Epstein-Barr/diagnóstico , Antígenos Nucleares do Vírus Epstein-Barr/imunologia , Hidrogéis/química , Imunoglobulina G/análise , Fragmentos de Peptídeos/metabolismo , Infecções por Vírus Epstein-Barr/imunologia , Infecções por Vírus Epstein-Barr/metabolismo , Infecções por Vírus Epstein-Barr/virologia , Fluorescência , Herpesvirus Humano 4/imunologia , Herpesvirus Humano 4/isolamento & purificação , Humanos , Hidrogéis/metabolismo , Imunoglobulina G/imunologia , Fragmentos de Peptídeos/imunologia , Polímeros/química
14.
Front Chem ; 9: 816544, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35178379

RESUMO

Glycosylation of viral envelope proteins is important for infectivity and immune evasion. The SARS-CoV-2 spike protein is heavily glycosylated and host-derived glycan modifications contribute to the formation of specific immunogenic epitopes, enhance the virus-cell interaction or affect virus transmission. On recombinant viral antigens used as subunit vaccines or for serological assays, distinct glycan structures may enhance the immunogenicity and are recognized by naturally occurring antibodies in human sera. Here, we performed an in vivo glycoengineering approach to produce recombinant variants of the SARS-CoV-2 receptor-binding domain (RBD) with blood group antigens in Nicotiana benthamiana plants. SARS-CoV-2 RBD and human glycosyltransferases for the blood group ABH antigen formation were transiently co-expressed in N. benthamiana leaves. Recombinant RBD was purified and the formation of complex N-glycans carrying blood group A antigens was shown by immunoblotting and MS analysis. Binding to the cellular ACE2 receptor and the conformation-dependent CR3022 antibody showed that the RBD glycosylation variants carrying blood group antigens were functional. Analysis of sera from RBD-positive and RBD-negative individuals revealed further that non-infected RBD-negative blood group O individuals have antibodies that strongly bind to RBD modified with blood group A antigen structures. The binding of IgGs derived from sera of non-infected RBD-negative blood group O individuals to blood group A antigens on SARS-CoV-2 RBD suggests that these antibodies could provide some degree of protection from virus infection.

15.
Cells ; 9(8)2020 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-32764425

RESUMO

BACKGROUND: Bacillus Calmette-Guérin (BCG) immunotherapy, the standard adjuvant intravesical therapy for some intermediate and most high-risk non-muscle invasive bladder cancers (NMIBCs), suffers from a heterogenous response rate. Molecular markers to help guide responses are scarce and currently not used in the clinical setting. METHODS: To identify novel biomarkers and pathways involved in response to BCG immunotherapy, we performed a genome-wide DNA methylation analysis of NMIBCs before BCG therapy. Genome-wide DNA methylation profiles of DNA isolated from tumors of 26 BCG responders and 27 failures were obtained using the Infinium MethylationEPIC BeadChip. RESULTS: Distinct DNA methylation patterns were found by genome-wide analysis in the two groups. Differentially methylated CpG sites were predominantly located in gene promoters and gene bodies associated with bacterial invasion of epithelial cells, chemokine signaling, endocytosis, and focal adhesion. In total, 40 genomic regions with a significant difference in methylation between responders and failures were detected. The differential methylation state of six of these regions, localized in the promoters of the genes GPR158, KLF8, C12orf42, WDR44, FLT1, and CHST11, were internally validated by bisulfite-sequencing. GPR158 promoter hypermethylation was the best predictor of BCG failure with an AUC of 0.809 (p-value < 0.001). CONCLUSIONS: Tumors from BCG responders and BCG failures harbor distinct DNA methylation profiles. Differentially methylated DNA regions were detected in genes related to pathways involved in bacterial invasion of cells or focal adhesion. We identified candidate DNA methylation biomarkers that may help to predict patient prognosis after external validation in larger, well-designed cohorts.


Assuntos
Adjuvantes Imunológicos/uso terapêutico , Vacina BCG/uso terapêutico , Metilação de DNA , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/genética , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/genética , Ilhas de CpG , Feminino , Estudo de Associação Genômica Ampla , Heterocromatina , Humanos , Imunoterapia , Masculino , Pessoa de Meia-Idade , Regiões Promotoras Genéticas , Resultado do Tratamento , Neoplasias da Bexiga Urinária/patologia
16.
PLoS One ; 15(2): e0228615, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32050001

RESUMO

To date, no comprehensive analysis of autoantibodies in sera of patients with ulcerative colitis has been conducted. To analyze the spectrum of autoantibodies and to elucidate their role serum-IgG from UC patients (n = 49) and non-UC donors (n = 23) were screened by using a human protein microarray. Screening yielded a remarkable number of 697 differentially-reactive at the nominal 0·01 significance level (FDR<0·1) of the univariate test between the UC and the non-UC group. CD99 emerged as a biomarker to discriminate between both groups (p = 1e-04, AUC = 0·8). In addition, cytokines, chemokines and growth factors were analyzed by Olink's Proseek® Multiplex Inflammation-I 96×96 immuno-qPCR assay and 31 genes were significant at the nominal 0.05 level of the univariate test to discriminate between UC and non-UC donors. MCP-3, HGF and CXCL-9 were identified as the most significant markers to discriminate between UC patients with clinically active and inactive disease. Levels of CXCL10 (cor = 0.3; p = 0.02), CCL25 (cor = 0.25; p = 0.04) and CCL28 (cor = 0.3; p = 0.02) correlated positively with levels of anti CD99. To assess whether autoantibodies are detectable prior to diagnosis with UC, sera from nine donors at two different time points (T-early, median 21 months and T-late, median 6 months) were analyzed. 1201 features were identified with higher reactivity in samples at time points closer to clinical UC presentation. In vitro, additional challenge of peripheral mononuclear cells with CD99 did not activate CD4+ T cells but induced the secretion of IL-10 (-CD99: 20.21±20.25; +CD99: 130.20±89.55; mean ±sd; p = 0.015). To examine the effect of CD99 in vivo, inflammation and autoantibody levels were examined in NOD/ScidIL2Rγnull mice reconstituted with PBMC from UC donors (NSG-UC). Additional challenge with CD99 aggravated disease symptoms and pathological phenotype as indicated by the elevated clinical score (-CD99: 1·85 ± 1·94; +CD99: 4·25 ± 1·48) and histological score (-CD99: 2·16 ± 0·83; +CD99: 3·15 ± 1·16, p = 0·01). Furthermore, levels of anti-CD99 antibodies increased (Control: 398 ± 323; mean MFI ± sd; Ethanol + PBS: 358 ±316; Ethanol + CD99: 1363 ± 1336; Control versus Ethanol + CD99: p = 0.03). In a highly inflammatory environment, frequencies of pro-inflammatory M1 monocytes (CD14+ CD64+: unchallenged 8.09±4.72; challenged 14.2±8.62; p = 0.07; CD14+ CD1a+: unchallenged 16.29 ±6.97; challenged 43.81±14.4, p = 0.0003) increased and levels of autoantibodies in serum decreased in the NSG-UC mouse model. These results suggest that autoantibodies are potent biomarkers to discriminate between UC and non-UC and indicate risk to develop UC. In an inflammatory environment, auto-antibodies may promote the pathological phenotype by activating M1 monocytes in the NSG-UC animal model and also in patients with UC.


Assuntos
Autoanticorpos/sangue , Colite Ulcerativa/diagnóstico , Adulto , Idoso , Animais , Autoanticorpos/imunologia , Biomarcadores/sangue , Células Cultivadas , Colite Ulcerativa/sangue , Colite Ulcerativa/imunologia , Citocinas/sangue , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Pessoa de Meia-Idade
17.
J Autoimmun ; 109: 102421, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32019685

RESUMO

Systemic autoinflammatory diseases (SAIDs) are a growing group of disorders caused by a dysregulation of the innate immune system leading to episodes of systemic inflammation. In 1997, MEFV was the first gene identified as disease causing for Familial Mediterranean Fever, the most common hereditary SAID. In most cases, autoinflammatory diseases have a strong genetic background with mutations in single genes. Since 1997 more than 30 new genes associated with autoinflammatory diseases have been identified, affecting different parts of the innate immune system. Nevertheless, for at least 40-60% of patients with phenotypes typical for SAIDs, a distinct diagnosis cannot be met, leading to undefined SAIDs (uSAIDs). However, SAIDs can also be of polygenic or multifactorial origin, with environmental influence modulating the phenotype. The implementation of a disease continuum model combining the adaptive and the innate immune system with autoinflammatory and autoimmune diseases shows the complexity of SAIDs and the importance of new methods to elucidate molecular changes and causative factors in SAIDs. Diagnosis is often based on clinical presentation and genetic testing. The timeline from onset to diagnosis takes up to 7.3 years, highlighting the indisputable need to identify new treatment and diagnostic targets. Recently, other factors are under investigation as additional contributors to the pathogenesis of SAIDs. This review gives an overview of pathogenesis and etiology of SAIDs, and summarizes recent diagnosis and treatment options.


Assuntos
Doenças Autoimunes/diagnóstico , Doenças Autoimunes/etiologia , Doenças Autoimunes/terapia , Inflamação/diagnóstico , Inflamação/etiologia , Inflamação/terapia , Animais , Biomarcadores , Gerenciamento Clínico , Suscetibilidade a Doenças , Interações Hospedeiro-Patógeno , Humanos , Inflamassomos/metabolismo , Especificidade de Órgãos , Transdução de Sinais
18.
Front Oncol ; 9: 1031, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31649887

RESUMO

Meningiomas are primary central nervous system (CNS) tumors that originate from the arachnoid cells of the meninges. Recurrence occurs in higher grade meningiomas and a small subset of Grade I meningiomas with benign histology. Currently, there are no established circulating tumor markers which can be used for diagnostic and prognostic purposes in a non-invasive way for meningiomas. Here, we aimed to identify potential biomarkers of meningioma in patient sera. For this purpose, we collected preoperative (n = 30) serum samples from the meningioma patients classified as Grade I (n = 23), Grade II (n = 4), or Grade III (n = 3). We used a high-throughput, multiplex immunoassay cancer panel comprising of 92 cancer-related protein biomarkers to explore the serum protein profiles of meningioma patients. We detected 14 differentially expressed proteins in the sera of the Grade I meningioma patients in comparison to the age- and gender-matched control subjects (n = 12). Compared to the control group, Grade I meningioma patients showed increased serum levels of amphiregulin (AREG), CCL24, CD69, prolactin, EGF, HB-EGF, caspase-3, and decreased levels of VEGFD, TGF-α, E-Selectin, BAFF, IL-12, CCL9, and GH. For validation studies, we utilized an independent set of meningioma tumor tissue samples (Grade I, n = 20; Grade II, n = 10; Grade III, n = 6), and found that the expressions of amphiregulin and Caspase3 are significantly increased in all grades of meningiomas either at the transcriptional or protein level, respectively. In contrast, the gene expression of VEGF-D was significantly lower in Grade I meningioma tissue samples. Taken together, our study identifies a meningioma-specific protein signature in blood circulation of meningioma patients and highlights the importance of equilibrium between tumor-promoting factors and anti-tumor immunity.

19.
PLoS One ; 14(6): e0218456, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31220138

RESUMO

Saliva based diagnostics is a rapidly evolving field due to the large diagnostic potential and simple sample collection. Currently only few individual molecules were investigated for their diagnostic capabilities in saliva. A systematic comparison of IgG antibody profiles in saliva and plasma is still missing in scientific literature. Our hypothesis is that IgG profiles in plasma and saliva are highly similar for each individual. As a consequence, one could implement practically any plasma based IgG assay (classical serology) as saliva based assay. In other words, the IgG antibodies found in blood are also accessible from saliva. We confirm our hypothesis by comparing IgG reactivities towards protein and peptide antigens. We isolated saliva IgG with high purity and demonstrate that plasma IgG reactivities (classical serology) can be inferred from saliva. As a showcase we perform Hepatitis B virus antibody (plasma-)titer determination from saliva. Additionally we show that plasma and saliva IgG profiles of 20 individuals are highly similar for 256 peptide antigens and match (unsupervised) with high probabilities. Finally, we argue for generalisation to the complete IgG antibody profile. The presented findings could contribute greatly to the development of saliva based diagnostic methods of numerous antibody based tests.


Assuntos
Anticorpos Antivirais/isolamento & purificação , Hepatite B/sangue , Imunoglobulina G/sangue , Saliva/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Ensaio de Imunoadsorção Enzimática , Hepatite B/virologia , Vírus da Hepatite B/isolamento & purificação , Vírus da Hepatite B/patogenicidade , Humanos , Imunoglobulina G/imunologia
20.
Oncotarget ; 10(37): 3491-3505, 2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-31191821

RESUMO

Background: Breast cancer is the most frequent and one of the most fatal malignancies among women. Within the concept of personalized medicine, molecular characterization of tumors is usually performed by analyzing somatic mutations, RNA gene expression signatures or the proteome by mass-spectrometry. Alternatively, the immunological fingerprint of the patients can be analyzed by protein microarrays, which is able to provide another layer of molecular pathological information without invasive intervention. Results: We have investigated the immune signature of breast cancer patients and compared them with healthy controls, using protein microarray-based IgG profiling. The identified differentially reactive antigens (n=517) were further evaluated by means of various pathway analysis tools. Our results indicate that the immune signature of breast cancer patients shows a clear distinction from healthy individuals characterized by differentially reactive antigens involved in known disease relevant signaling pathways, such as VEGF, AKT/PI3K/mTOR or c-KIT, which is in close agreement with the findings from RNA-based expression profiles. Conclusion: Differential antigenic properties between breast cancer patients and healthy individual classes can be defined by serum-IgG profiling on protein microarrays. These immunome profiles provide an additional layer of molecular pathological information, which has the potential to refine and complete the systems biological map of neoplastic disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...