Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Eye Res ; 166: 131-139, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29066281

RESUMO

To assess serial section block-face scanning electron microscopy (SBFSEM) for retinal pigment epithelium (RPE) ultrastructure, we determined the number and distribution within RPE cell bodies of melanosomes (M), lipofuscin (L), and melanolipofuscin (ML). Eyes of 4 Caucasian donors (16M, 32F, 76F, 84M) with unremarkable maculas were sectioned and imaged using an SEM fitted with an in-chamber automated ultramicrotome. Aligned image stacks were generated by alternately imaging an epoxy resin block face using backscattered electrons, then removing a 125 nm-thick layer. Series of 249-499 sections containing 5-24 nuclei were examined per eye. Trained readers manually assigned boundaries of individual cells and x,y,z locations of M, L, and ML. A Density Recovery Profile was computed in three dimensions for M, L, and ML. The number of granules per RPE cell body in 16M, 32F, 76F, and 84M eyes, respectively, was 465 ± 127 (mean ± SD), 305 ± 92, 79 ± 40, and 333 ± 134 for L; 13 ± 9; 6 ± 7, 131 ± 55, and 184 ± 66 for ML; and 29 ± 19, 24 ± 12, 12 ± 7, and 7 ± 3 for M. Granule types were spatially organized, with M near apical processes. The effective radius, a sphere of decreased probability for granule occurrence, was 1 µm for L, ML, and M combined. In conclusion, SBFEM reveals that adult human RPE has hundreds of L, LF, and M and that granule spacing is regulated by granule size alone. When obtained for a larger sample, this information will enable hypothesis testing about organelle turnover and regulation in health, aging, and disease, and elucidate how RPE-specific signals are generated in clinical optical coherence tomography and autofluorescence imaging.


Assuntos
Lipofuscina/análise , Melanossomas/ultraestrutura , Microscopia Eletrônica de Varredura/métodos , Epitélio Pigmentado da Retina/ultraestrutura , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino
2.
Z Evid Fortbild Qual Gesundhwes ; 109(4-5): 285-90, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26354128

RESUMO

The rapidly growing production of healthcare information - both scientific and popular - increasingly leads to a situation of information overload affecting all actors of the healthcare system and threatening to impede the adoption of evidence-based practice. In preparation for the 2015 Cochrane Colloquium in Vienna, we discuss the issues faced by three major actors of this system: patients, healthcare practitioners, and systematic reviewers. We analyze their situation through the concept of "filter failure", positing that the main problem is not that there is "too much information", but that the traditional means of managing and evaluating information are ill-suited to the realities of the digital age. Some of the major instances of filter failure are inadequate information retrieval systems for point-of-care settings, the problem of identifying all relevant evidence in an exceedingly diverse landscape of information resources, and the very basic lack of health information literacy, concerning not only the general public. Finally, we give an overview of proposed solutions to the problem of information overload. These new or adapted filtering systems include adapting review literature to the specific needs of practitioners or patients, technological improvements to information systems, strengthening the roles of intermediaries, as well as improving health literacy.


Assuntos
Gestão da Informação em Saúde , Disseminação de Informação , Internet , Avaliação da Tecnologia Biomédica , Áustria , Difusão de Inovações , Medicina Baseada em Evidências , Pessoal de Saúde , Humanos , Acesso dos Pacientes aos Registros , Literatura de Revisão como Assunto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...