Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 299(1): 102753, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36442512

RESUMO

Small Heat shock proteins (sHsps) are a family of molecular chaperones that bind nonnative proteins in an ATP-independent manner. Caenorhabditis elegans encodes 16 different sHsps, among them Hsp17, which is evolutionarily distinct from other sHsps in the nematode. The structure and mechanism of Hsp17 and how these may differ from other sHsps remain unclear. Here, we find that Hsp17 has a distinct expression pattern, structural organization, and chaperone function. Consistent with its presence under nonstress conditions, and in contrast to many other sHsps, we determined that Hsp17 is a mono-disperse, permanently active chaperone in vitro, which interacts with hundreds of different C. elegans proteins under physiological conditions. Additionally, our cryo-EM structure of Hsp17 reveals that in the 24-mer complex, 12 N-terminal regions are involved in its chaperone function. These flexible regions are located on the outside of the spherical oligomer, whereas the other 12 N-terminal regions are engaged in stabilizing interactions in its interior. This allows the same region in Hsp17 to perform different functions depending on the topological context. Taken together, our results reveal structural and functional features that further define the structural basis of permanently active sHsps.


Assuntos
Proteínas de Choque Térmico Pequenas , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Choque Térmico Pequenas/genética , Proteínas de Choque Térmico Pequenas/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo
2.
Nat Commun ; 12(1): 6697, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34795272

RESUMO

Hsp26 is a small heat shock protein (sHsp) from S. cerevisiae. Its chaperone activity is activated by oligomer dissociation at heat shock temperatures. Hsp26 contains 9 phosphorylation sites in different structural elements. Our analysis of phospho-mimetic mutations shows that phosphorylation activates Hsp26 at permissive temperatures. The cryo-EM structure of the Hsp26 40mer revealed contacts between the conserved core domain of Hsp26 and the so-called thermosensor domain in the N-terminal part of the protein, which are targeted by phosphorylation. Furthermore, several phosphorylation sites in the C-terminal extension, which link subunits within the oligomer, are sensitive to the introduction of negative charges. In all cases, the intrinsic inhibition of chaperone activity is relieved and the N-terminal domain becomes accessible for substrate protein binding. The weakening of domain interactions within and between subunits by phosphorylation to activate the chaperone activity in response to proteotoxic stresses independent of heat stress could be a general regulation principle of sHsps.


Assuntos
Proteínas de Choque Térmico/metabolismo , Multimerização Proteica , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sítios de Ligação/genética , Dicroísmo Circular , Microscopia Crioeletrônica , Transferência Ressonante de Energia de Fluorescência , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/genética , Resposta ao Choque Térmico , Modelos Moleculares , Mutação , Fosforilação , Ligação Proteica , Conformação Proteica , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Espectrometria de Massas em Tandem , Temperatura
3.
Nat Struct Mol Biol ; 28(2): 143-151, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33432246

RESUMO

The prevalent model for cataract formation in the eye lens posits that damaged crystallin proteins form light-scattering aggregates. The α-crystallins are thought to counteract this process as chaperones by sequestering misfolded crystallin proteins. In this scenario, chaperone pool depletion would result in lens opacification. Here we analyze lenses from different mouse strains that develop early-onset cataract due to point mutations in α-, ß-, or γ-crystallin proteins. We find that these mutant crystallins are unstable in vitro; in the lens, their levels are substantially reduced, and they do not accumulate in the water-insoluble fraction. Instead, all the other crystallin proteins, including the α-crystallins, are found to precipitate. The changes in protein composition and spatial organization of the crystallins observed in the mutant lenses suggest that the imbalance in the lenticular proteome and altered crystallin interactions are the bases for cataract formation, rather than the aggregation propensity of the mutant crystallins.


Assuntos
Catarata/metabolismo , Cristalinas/metabolismo , Cristalino , Agregação Patológica de Proteínas , Animais , Cristalino/metabolismo , Cristalino/patologia , Camundongos , Chaperonas Moleculares/metabolismo , Proteoma/metabolismo
5.
Biochim Biophys Acta Biomembr ; 1862(4): 183190, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31935366

RESUMO

A membrane protein's oligomeric state modulates its functionality in various cellular processes. Since membrane proteins have to be solubilized in an appropriate membrane mimetic, the use of classical biophysical methods to analyze protein oligomers is challenging. We here present a method to determine the number of membrane proteins inserted into lipid nanodiscs. It is based on the ability to selectively quantify the amount of a small and robust fusion protein that can be proteolytically cleaved off from a membrane protein after incorporation into lipid nanodiscs. A detailed knowledge of the number of membrane proteins per nanodisc at defined assembly conditions is essential to estimate the tendency for oligomerization, but also for guiding sample optimization for structural investigations that require the presence of a homogenous oligomeric state. We show that this method can efficiently be used to determine the number of VDAC1 channels in nanodiscs at various assembly conditions, as confirmed by negative stain EM. The presented method is suitable in particular for membrane proteins that cannot be probed easily by other methods such as single span transmembrane helices. This assay can be applied to any membrane protein that can be incorporated into a nanodisc without the requirement for special instrumentation and will thus be widely applicable and complementary to other methods that quantify membrane protein insertion in lipid nanodiscs.


Assuntos
Bicamadas Lipídicas/química , Proteínas de Membrana/química , Nanoestruturas/química , Canal de Ânion 1 Dependente de Voltagem/genética , Fenômenos Biofísicos , Membrana Celular/química , Membrana Celular/genética , Humanos , Proteínas de Membrana/genética , Fosfolipídeos/química , Estrutura Secundária de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Canal de Ânion 1 Dependente de Voltagem/química , Proteína bcl-X/química , Proteína bcl-X/genética
6.
J Biol Chem ; 295(1): 158-169, 2020 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-31767683

RESUMO

Small heat-shock proteins (sHsps) compose the most widespread family of molecular chaperones. The human genome encodes 10 different sHsps (HspB1-10). It has been shown that HspB1 (Hsp27), HspB5 (αB-crystallin), and HspB6 (Hsp20) can form hetero-oligomers in vivo However, the impact of hetero-oligomerization on their structure and chaperone mechanism remains enigmatic. Here, we analyzed hetero-oligomer formation in human cells and in vitro using purified proteins. Our results show that the effect of hetero-oligomer formation on the composition of the sHsp ensembles and their chaperone activities depends strongly on the respective sHsps involved. We observed that hetero-oligomer formation between HspB1 and HspB5 leads to an ensemble that is dominated by species larger than the individual homo-oligomers. In contrast, the interaction of dimeric HspB6 with either HspB1 or HspB5 oligomers shifted the ensemble toward smaller oligomers. We noted that the larger HspB1-HspB5 hetero-oligomers are less active and that HspB6 activates HspB5 by dissociation to smaller oligomer complexes. The chaperone activity of HspB1-HspB6 hetero-oligomers, however, was modulated in a substrate-specific manner, presumably due to the specific enrichment of an HspB1-HspB6 heterodimer. These heterodimeric species may allow the tuning of the chaperone properties toward specific substrates. We conclude that sHsp hetero-oligomerization exerts distinct regulatory effects depending on the sHsps involved.


Assuntos
Proteínas de Choque Térmico Pequenas/metabolismo , Multimerização Proteica , Células CACO-2 , Células HEK293 , Células HeLa , Células Hep G2 , Humanos , Células MCF-7
7.
Nat Struct Mol Biol ; 26(12): 1141-1150, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31792453

RESUMO

The small heat shock protein αA-crystallin is a molecular chaperone important for the optical properties of the vertebrate eye lens. It forms heterogeneous oligomeric ensembles. We determined the structures of human αA-crystallin oligomers by combining cryo-electron microscopy, cross-linking/mass spectrometry, NMR spectroscopy and molecular modeling. The different oligomers can be interconverted by the addition or subtraction of tetramers, leading to mainly 12-, 16- and 20-meric assemblies in which interactions between N-terminal regions are important. Cross-dimer domain-swapping of the C-terminal region is a determinant of αA-crystallin heterogeneity. Human αA-crystallin contains two cysteines, which can form an intramolecular disulfide in vivo. Oxidation in vitro requires conformational changes and oligomer dissociation. The oxidized oligomers, which are larger than reduced αA-crystallin and destabilized against unfolding, are active chaperones and can transfer the disulfide to destabilized substrate proteins. The insight into the structure and function of αA-crystallin provides a basis for understanding its role in the eye lens.


Assuntos
Cadeia A de alfa-Cristalina/química , Microscopia Crioeletrônica , Humanos , Cristalino/química , Modelos Moleculares , Oxirredução , Conformação Proteica , Multimerização Proteica , Desdobramento de Proteína , Cadeia A de alfa-Cristalina/ultraestrutura
8.
J Biol Chem ; 294(6): 2121-2132, 2019 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-30385502

RESUMO

Small heat shock proteins (sHsps) are a ubiquitous and ancient family of ATP-independent molecular chaperones. A key characteristic of sHsps is that they exist in ensembles of iso-energetic oligomeric species differing in size. This property arises from a unique mode of assembly involving several parts of the subunits in a flexible manner. Current evidence suggests that smaller oligomers are more active chaperones. Thus, a shift in the equilibrium of the sHsp ensemble allows regulating the chaperone activity. Different mechanisms have been identified that reversibly change the oligomer equilibrium. The promiscuous interaction with non-native proteins generates complexes that can form aggregate-like structures from which native proteins are restored by ATP-dependent chaperones such as Hsp70 family members. In recent years, this basic paradigm has been expanded, and new roles and new cofactors, as well as variations in structure and regulation of sHsps, have emerged.


Assuntos
Proteínas de Choque Térmico HSP70/metabolismo , Dobramento de Proteína , Multimerização Proteica , Animais , Proteínas de Choque Térmico HSP70/genética , Humanos , Ligação Proteica , Estrutura Quaternária de Proteína
9.
Biochim Biophys Acta ; 1860(1 Pt B): 149-66, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26116912

RESUMO

BACKGROUND: The two α-crystallins (αA- and αB-crystallin) are major components of our eye lenses. Their key function there is to preserve lens transparency which is a challenging task as the protein turnover in the lens is low necessitating the stability and longevity of the constituent proteins. α-Crystallins are members of the small heat shock protein family. αB-crystallin is also expressed in other cell types. SCOPE OF THE REVIEW: The review summarizes the current concepts on the polydisperse structure of the α-crystallin oligomer and its chaperone function with a focus on the inherent complexity and highlighting gaps between in vitro and in vivo studies. MAJOR CONCLUSIONS: Both α-crystallins protect proteins from irreversible aggregation in a promiscuous manner. In maintaining eye lens transparency, they reduce the formation of light scattering particles and balance the interactions between lens crystallins. Important for these functions is their structural dynamics and heterogeneity as well as the regulation of these processes which we are beginning to understand. However, currently, it still remains elusive to which extent the in vitro observed properties of α-crystallins reflect the highly crowded situation in the lens. GENERAL SIGNIFICANCE: Since α-crystallins play an important role in preventing cataract in the eye lens and in the development of diverse diseases, understanding their mechanism and substrate spectra is of importance. To bridge the gap between the concepts established in vitro and the in vivo function of α-crystallins, the joining of forces between different scientific disciplines and the combination of diverse techniques in hybrid approaches are necessary. This article is part of a Special Issue entitled Crystallin Biochemistry in Health and Disease.


Assuntos
Catarata/metabolismo , Cristalino/química , Cristalino/metabolismo , alfa-Cristalinas/química , alfa-Cristalinas/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Catarata/patologia , Humanos , Técnicas In Vitro , Cristalino/ultraestrutura , Dados de Sequência Molecular , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade , alfa-Cristalinas/ultraestrutura
10.
Nat Struct Mol Biol ; 22(11): 898-905, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26458046

RESUMO

Small heat-shock proteins, including αB-crystallin (αB), play an important part in protein homeostasis, because their ATP-independent chaperone activity inhibits uncontrolled protein aggregation. Mechanistic details of human αB, particularly in its client-bound state, have been elusive so far, owing to the high molecular weight and the heterogeneity of these complexes. Here we provide structural insights into this highly dynamic assembly and show, by using state-of-the-art NMR spectroscopy, that the αB complex is assembled from asymmetric building blocks. Interaction studies demonstrated that the fibril-forming Alzheimer's disease Aß1-40 peptide preferentially binds to a hydrophobic edge of the central ß-sandwich of αB. In contrast, the amorphously aggregating client lysozyme is captured by the partially disordered N-terminal domain of αB. We suggest that αB uses its inherent structural plasticity to expose distinct binding interfaces and thus interact with a wide range of structurally variable clients.


Assuntos
Amiloide/metabolismo , Cadeia B de alfa-Cristalina/química , Cadeia B de alfa-Cristalina/metabolismo , Humanos , Espectroscopia de Ressonância Magnética , Modelos Biológicos , Modelos Moleculares , Ligação Proteica , Conformação Proteica
11.
Mol Cell ; 58(6): 1067-78, 2015 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-26009280

RESUMO

Small heat shock proteins (sHsps) are ubiquitous molecular chaperones that prevent the aggregation of unfolding proteins during proteotoxic stress. In Caenorhabditis elegans, Sip1 is the only sHsp exclusively expressed in oocytes and embryos. Here, we demonstrate that Sip1 is essential for heat shock survival of reproducing adults and embryos. X-ray crystallography and electron microscopy revealed that Sip1 exists in a range of well-defined globular assemblies consisting of two half-spheres, each made of dimeric "spokes." Strikingly, the oligomeric distribution of Sip1 as well as its chaperone activity depend on pH, with a trend toward smaller species and higher activity at acidic conditions such as present in nematode eggs. The analysis of the interactome shows that Sip1 has a specific substrate spectrum including proteins that are essential for embryo development.


Assuntos
Proteínas de Caenorhabditis elegans/química , Proteínas de Choque Térmico Pequenas/química , Chaperonas Moleculares/química , Conformação Proteica , Sequência de Aminoácidos , Animais , Western Blotting , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/classificação , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Microscopia Crioeletrônica , Cristalografia por Raios X , Proteínas de Choque Térmico Pequenas/genética , Proteínas de Choque Térmico Pequenas/metabolismo , Concentração de Íons de Hidrogênio , Modelos Moleculares , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Dados de Sequência Molecular , Mutação , Filogenia , Ligação Proteica , Multimerização Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Temperatura
12.
Mol Cell Biol ; 34(12): 2147-61, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24687852

RESUMO

Mutations in the leucine-rich repeat kinase 2 gene (LRRK2) are associated with familial and sporadic Parkinson's disease (PD). LRRK2 is a complex protein that consists of multiple domains, including predicted C-terminal WD40 repeats. In this study, we analyzed functional and molecular features conferred by the WD40 domain. Electron microscopic analysis of the purified LRRK2 C-terminal domain revealed doughnut-shaped particles, providing experimental evidence for its WD40 fold. We demonstrate that LRRK2 WD40 binds and sequesters synaptic vesicles via interaction with vesicle-associated proteins. In fact, a domain-based pulldown approach combined with mass spectrometric analysis identified LRRK2 as being part of a highly specific protein network involved in synaptic vesicle trafficking. In addition, we found that a C-terminal sequence variant associated with an increased risk of developing PD, G2385R, correlates with a reduced binding affinity of LRRK2 WD40 to synaptic vesicles. Our data demonstrate a critical role of the WD40 domain within LRRK2 function.


Assuntos
Neurônios/metabolismo , Domínios e Motivos de Interação entre Proteínas , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Vesículas Sinápticas/metabolismo , Animais , Células Cultivadas , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Mutação/genética , Neuropeptídeos/metabolismo , Neurotoxinas/toxicidade , Doença de Parkinson/enzimologia , Doença de Parkinson/genética , Doença de Parkinson/patologia , Ligação Proteica , Mapeamento de Interação de Proteínas , Proteínas Serina-Treonina Quinases/ultraestrutura , Receptores de Quinase C Ativada , Relação Estrutura-Atividade , Sinapses/metabolismo
13.
Proc Natl Acad Sci U S A ; 110(40): E3780-9, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-24043785

RESUMO

The small heat shock protein αB-crystallin is an oligomeric molecular chaperone that binds aggregation-prone proteins. As a component of the proteostasis system, it is associated with cataract, neurodegenerative diseases, and myopathies. The structural determinants for the regulation of its chaperone function are still largely elusive. Combining different experimental approaches, we show that phosphorylation-induced destabilization of intersubunit interactions mediated by the N-terminal domain (NTD) results in the remodeling of the oligomer ensemble with an increase in smaller, activated species, predominantly 12-mers and 6-mers. Their 3D structures determined by cryo-electron microscopy and biochemical analyses reveal that the NTD in these species gains flexibility and solvent accessibility. These modulated properties are accompanied by an increase in chaperone activity in vivo and in vitro and a more efficient cooperation with the heat shock protein 70 system in client folding. Thus, the modulation of the structural flexibility of the NTD, as described here for phosphorylation, appears to regulate the chaperone activity of αB-crystallin rendering the NTD a conformational sensor for nonnative proteins.


Assuntos
Modelos Moleculares , Chaperonas Moleculares/química , Conformação Proteica , Cadeia B de alfa-Cristalina/química , Cromatografia em Gel , Clonagem Molecular , Microscopia Crioeletrônica , Eletroforese em Gel de Poliacrilamida , Proteínas de Choque Térmico HSP70/metabolismo , Células HeLa , Humanos , Processamento de Imagem Assistida por Computador , Chaperonas Moleculares/metabolismo , Fosforilação , Corantes de Rosanilina , Cadeia B de alfa-Cristalina/metabolismo
14.
Proc Natl Acad Sci U S A ; 109(50): 20407-12, 2012 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-23184973

RESUMO

Small heat shock proteins (sHsps) are molecular chaperones that prevent the aggregation of nonnative proteins. The sHsps investigated to date mostly form large, oligomeric complexes. The typical bacterial scenario seemed to be a two-component sHsps system of two homologous sHsps, such as the Escherichia coli sHsps IbpA and IbpB. With a view to expand our knowledge on bacterial sHsps, we analyzed the sHsp system of the bacterium Deinococcus radiodurans, which is resistant against various stress conditions. D. radiodurans encodes two sHsps, termed Hsp17.7 and Hsp20.2. Surprisingly, Hsp17.7 forms only chaperone active dimers, although its crystal structure reveals the typical α-crystallin fold. In contrast, Hsp20.2 is predominantly a 36mer that dissociates into smaller oligomeric assemblies that bind substrate proteins stably. Whereas Hsp20.2 cooperates with the ATP-dependent bacterial chaperones in their refolding, Hsp17.7 keeps substrates in a refolding-competent state by transient interactions. In summary, we show that these two sHsps are strikingly different in their quaternary structures and chaperone properties, defining a second type of bacterial two-component sHsp system.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Choque Térmico Pequenas/química , Proteínas de Choque Térmico Pequenas/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/ultraestrutura , Cristalografia por Raios X , Deinococcus/genética , Deinococcus/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Choque Térmico Pequenas/genética , Proteínas de Choque Térmico Pequenas/ultraestrutura , Microscopia Eletrônica de Transmissão , Modelos Moleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Dados de Sequência Molecular , Dobramento de Proteína , Multimerização Proteica , Estrutura Quaternária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestrutura , Homologia de Sequência de Aminoácidos , Estresse Fisiológico
15.
Proc Natl Acad Sci U S A ; 108(51): 20491-6, 2011 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-22143763

RESUMO

The molecular chaperone αB-crystallin, the major player in maintaining the transparency of the eye lens, prevents stress-damaged and aging lens proteins from aggregation. In nonlenticular cells, it is involved in various neurological diseases, diabetes, and cancer. Given its structural plasticity and dynamics, structure analysis of αB-crystallin presented hitherto a formidable challenge. Here we present a pseudoatomic model of a 24-meric αB-crystallin assembly obtained by a triple hybrid approach combining data from cryoelectron microscopy, NMR spectroscopy, and structural modeling. The model, confirmed by cross-linking and mass spectrometry, shows that the subunits interact within the oligomer in different, defined conformations. We further present the molecular architectures of additional well-defined αB-crystallin assemblies with larger or smaller numbers of subunits, provide the mechanism how "heterogeneity" is achieved by a small set of defined structural variations, and analyze the factors modulating the oligomer equilibrium of αB-crystallin and thus its chaperone activity.


Assuntos
Cristalino/metabolismo , Cadeia B de alfa-Cristalina/química , Reagentes de Ligações Cruzadas/química , Microscopia Crioeletrônica/métodos , Proteínas de Choque Térmico/metabolismo , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Espectroscopia de Ressonância Magnética/métodos , Espectrometria de Massas/métodos , Microscopia Eletrônica/métodos , Modelos Moleculares , Conformação Molecular , Mutagênese Sítio-Dirigida , Conformação Proteica , Estrutura Secundária de Proteína
17.
Mol Cell ; 39(4): 507-20, 2010 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-20797624

RESUMO

Hsp12 of S. cerevisiae is upregulated several 100-fold in response to stress. Our phenotypic analysis showed that this protein is important for survival of a variety of stress conditions, including high temperature. In the absence of Hsp12, we observed changes in cell morphology under stress conditions. Surprisingly, in the cell, Hsp12 exists both as a soluble cytosolic protein and associated to the plasma membrane. The in vitro analysis revealed that Hsp12, unlike all other Hsps studied so far, is completely unfolded; however, in the presence of certain lipids, it adopts a helical structure. The presence of Hsp12 does not alter the overall lipid composition of the plasma membrane but increases membrane stability.


Assuntos
Membrana Celular/metabolismo , Proteínas de Choque Térmico/genética , Fluidez de Membrana , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Membrana Celular/ultraestrutura , Citosol/metabolismo , Regulação Fúngica da Expressão Gênica , Genótipo , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/metabolismo , Resposta ao Choque Térmico , Lipídeos de Membrana/metabolismo , Pressão Osmótica , Estresse Oxidativo , Fenótipo , Dobramento de Proteína , Estrutura Secundária de Proteína , Transporte Proteico , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Deleção de Sequência , Estresse Fisiológico , Relação Estrutura-Atividade
18.
J R Soc Interface ; 7(42): 143-52, 2010 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-19474081

RESUMO

Migration of the Pachycondyla marginata ant is significantly oriented at 13 degrees with respect to the geomagnetic north-south axis. On the basis of previous magnetic measurements of individual parts of the body (antennae, head, thorax and abdomen), the antennae were suggested to host a magnetoreceptor. In order to identify Fe(3+)/Fe(2+) sites in antennae tissue, we used light microscopy on Prussian/Turnbull's blue-stained tissue. Further analysis using transmission electron microscopy imaging and diffraction, combined with elemental analysis, revealed the presence of ultra-fine-grained crystals (20-100 nm) of magnetite/maghaemite (Fe(3)O(4)/gamma-Fe(2)O(3)), haematite (alpha-Fe(2)O(3)), goethite (alpha-FeOOH) besides (alumo)silicates and Fe/Ti/O compounds in different parts of the antennae, that is, in the joints between the third segment/pedicel, pedicel/scape and scape/head, respectively. The presence of (alumo)silicates and Fe/Ti/O compounds suggests that most, if not all, of the minerals in the tissue are incorporated soil particles rather than biomineralized by the ants. However, as the particles were observed within the tissue, they do not represent contamination. The amount of magnetic material associated with Johnston's organ and other joints appears to be sufficient to produce a magnetic-field-modulated mechanosensory output, which may therefore underlie the magnetic sense of the migratory ant.


Assuntos
Formigas/química , Formigas/fisiologia , Ferro/análise , Mecanotransdução Celular/fisiologia , Orientação/fisiologia , Órgãos dos Sentidos/química , Órgãos dos Sentidos/fisiologia , Animais , Formigas/efeitos da radiação , Campos Eletromagnéticos , Magnetismo , Mecanotransdução Celular/efeitos da radiação , Órgãos dos Sentidos/efeitos da radiação
19.
Proc Natl Acad Sci U S A ; 106(32): 13272-7, 2009 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-19651604

RESUMO

Alpha-crystallins are molecular chaperones that protect vertebrate eye lens proteins from detrimental protein aggregation. alphaB-Crystallin, 1 of the 2 alpha-crystallin isoforms, is also associated with myopathies and neuropathological diseases. Despite the importance of alpha-crystallins in protein homeostasis, only little is known about their quaternary structures because of their seemingly polydisperse nature. Here, we analyzed the structures of recombinant alpha-crystallins using biophysical methods. In contrast to previous reports, we show that alphaB-crystallin assembles into defined oligomers consisting of 24 subunits. The 3-dimensional (3D) reconstruction of alphaB-crystallin by electron microscopy reveals a sphere-like structure with large openings to the interior of the protein. alphaA-Crystallin forms, in addition to complexes of 24 subunits, also smaller oligomers and large clusters consisting of individual oligomers. This propensity might explain the previously reported polydisperse nature of alpha-crystallin.


Assuntos
Cristalino/química , alfa-Cristalinas/química , Animais , Bovinos , Humanos , Modelos Moleculares , Estrutura Quaternária de Proteína , alfa-Cristalinas/ultraestrutura
20.
Artigo em Inglês | MEDLINE | ID: mdl-18607092

RESUMO

Icosahedral macromolecules have a wide spectrum of potential nanotechnological applications, the success of which relies on the level of accuracy at which the molecular structure is known. Lumazine synthase from Bacillus subtilis forms a 150 A icosahedral capsid consisting of 60 subunits and crystallizes in space group P6(3)22 or C2. However, the quality of these crystals is poor and structural information is only available at 2.4 A resolution. As classical strategies for growing better diffracting crystals have so far failed, protein engineering has been employed in order to improve the overexpression and purification of the molecule as well as to obtain new crystal forms. Two cysteines were replaced to bypass misfolding problems and a charged surface residue was replaced to force different molecular packings. The mutant protein crystallizes in space group R3, with unit-cell parameters a = b = 313.02, c = 365.77 A, alpha = beta = 90.0, gamma = 120 degrees , and diffracts to 1.6 A resolution.


Assuntos
Complexos Multienzimáticos/normas , Engenharia de Proteínas/normas , Bacillus subtilis/enzimologia , Bacillus subtilis/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/normas , Cristalização/métodos , Cristalização/normas , Complexos Multienzimáticos/química , Complexos Multienzimáticos/genética , Mutagênese Sítio-Dirigida/métodos , Mutagênese Sítio-Dirigida/normas , Engenharia de Proteínas/métodos , Riboflavina Sintase/química , Riboflavina Sintase/genética , Riboflavina Sintase/normas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...