Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 116(10): 4244-4249, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30760596

RESUMO

Despite the biological importance of protein-protein complexes, determining their structures and association mechanisms remains an outstanding challenge. Here, we report the results of atomic-level simulations in which we observed five protein-protein pairs repeatedly associate to, and dissociate from, their experimentally determined native complexes using a molecular dynamics (MD)-based sampling approach that does not make use of any prior structural information about the complexes. To study association mechanisms, we performed additional, conventional MD simulations, in which we observed numerous spontaneous association events. A shared feature of native association for these five structurally and functionally diverse protein systems was that if the proteins made contact far from the native interface, the native state was reached by dissociation and eventual reassociation near the native interface, rather than by extensive interfacial exploration while the proteins remained in contact. At the transition state (the conformational ensemble from which association to the native complex and dissociation are equally likely), the protein-protein interfaces were still highly hydrated, and no more than 20% of native contacts had formed.


Assuntos
Simulação de Dinâmica Molecular , Domínios e Motivos de Interação entre Proteínas , Proteínas/química , Ligação Proteica , Conformação Proteica , Termodinâmica
2.
J Chem Theory Comput ; 12(3): 1360-7, 2016 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-26866996

RESUMO

Molecular dynamics (MD) simulations can describe protein motions in atomic detail, but transitions between protein conformational states sometimes take place on time scales that are infeasible or very expensive to reach by direct simulation. Enhanced sampling methods, the aim of which is to increase the sampling efficiency of MD simulations, have thus been extensively employed. The effectiveness of such methods when applied to complex biological systems like proteins, however, has been difficult to establish because even enhanced sampling simulations of such systems do not typically reach time scales at which convergence is extensive enough to reliably quantify sampling efficiency. Here, we obtain sufficiently converged simulations of three proteins to evaluate the performance of simulated tempering, a member of a widely used class of enhanced sampling methods that use elevated temperature to accelerate sampling. Simulated tempering simulations with individual lengths of up to 100 µs were compared to (previously published) conventional MD simulations with individual lengths of up to 1 ms. With two proteins, BPTI and ubiquitin, we evaluated the efficiency of sampling of conformational states near the native state, and for the third, the villin headpiece, we examined the rate of folding and unfolding. Our comparisons demonstrate that simulated tempering can consistently achieve a substantial sampling speedup of an order of magnitude or more relative to conventional MD.


Assuntos
Aprotinina/química , Proteínas dos Microfilamentos/química , Simulação de Dinâmica Molecular , Ubiquitina/química , Dobramento de Proteína
3.
J Chem Theory Comput ; 10(7): 2860-5, 2014 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-26586510

RESUMO

Structurally elucidating transition pathways between protein conformations gives deep mechanistic insight into protein behavior but is typically difficult. Unbiased molecular dynamics (MD) simulations provide one solution, but their computational expense is often prohibitive, motivating the development of enhanced sampling methods that accelerate conformational changes in a given direction, embodied in a collective variable. The accuracy of such methods is unclear for complex protein transitions, because obtaining unbiased MD data for comparison is difficult. Here, we use long-time scale, unbiased MD simulations of epidermal growth factor receptor kinase deactivation as a complex biological test case for two widely used methods-steered molecular dynamics (SMD) and the string method. We found that common collective variable choices, based on the root-mean-square deviation (RMSD) of the entire protein, prevented the methods from producing accurate paths, even in SMD simulations on the time scale of the unbiased transition. Using collective variables based on the RMSD of the region of the protein known to be important for the conformational change, however, enabled both methods to provide a more accurate description of the pathway in a fraction of the simulation time required to observe the unbiased transition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...