Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
BMJ Open ; 14(3): e077869, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38485476

RESUMO

OBJECTIVE: To characterise subphenotypes of self-reported symptoms and outcomes (SRSOs) in postacute sequelae of COVID-19 (PASC). DESIGN: Prospective, observational cohort study of subjects with PASC. SETTING: Academic tertiary centre from five clinical referral sources. PARTICIPANTS: Adults with COVID-19 ≥20 days before enrolment and presence of any new self-reported symptoms following COVID-19. EXPOSURES: We collected data on clinical variables and SRSOs via structured telephone interviews and performed standardised assessments with validated clinical numerical scales to capture psychological symptoms, neurocognitive functioning and cardiopulmonary function. We collected saliva and stool samples for quantification of SARS-CoV-2 RNA via quantitative PCR. OUTCOMES MEASURES: Description of PASC SRSOs burden and duration, derivation of distinct PASC subphenotypes via latent class analysis (LCA) and relationship with viral load. RESULTS: We analysed baseline data for 214 individuals with a study visit at a median of 197.5 days after COVID-19 diagnosis. Participants reported ever having a median of 9/16 symptoms (IQR 6-11) after acute COVID-19, with muscle-aches, dyspnoea and headache being the most common. Fatigue, cognitive impairment and dyspnoea were experienced for a longer time. Participants had a lower burden of active symptoms (median 3 (1-6)) than those ever experienced (p<0.001). Unsupervised LCA of symptoms revealed three clinically active PASC subphenotypes: a high burden constitutional symptoms (21.9%), a persistent loss/change of smell and taste (20.6%) and a minimal residual symptoms subphenotype (57.5%). Subphenotype assignments were strongly associated with self-assessments of global health, recovery and PASC impact on employment (p<0.001) as well as referral source for enrolment. Viral persistence (5.6% saliva and 1% stool samples positive) did not explain SRSOs or subphenotypes. CONCLUSIONS: We identified three distinct PASC subphenotypes. We highlight that although most symptoms progressively resolve, specific PASC subpopulations are impacted by either high burden of constitutional symptoms or persistent olfactory/gustatory dysfunction, requiring prospective identification and targeted preventive or therapeutic interventions.


Assuntos
COVID-19 , Síndrome de COVID-19 Pós-Aguda , Adulto , Humanos , COVID-19/epidemiologia , Estudos Prospectivos , Autorrelato , Teste para COVID-19 , Análise de Classes Latentes , RNA Viral , SARS-CoV-2 , Progressão da Doença , Dispneia
2.
Clin Pharmacol Ther ; 112(5): 1004-1007, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35792715

RESUMO

In this report, we describe our scientific approach for including effluent flow rate (QE )-based dosing recommendations of cefiderocol for patients receiving continuous renal replacement therapy (CRRT) in the product labeling. The total clearance (CL) of cefiderocol in patients receiving CRRT was estimated as the sum of patients' nonrenal clearance (CLnonrenal ) and extracorporeal clearance by CRRT (CLCRRT ), based on the following rationale: (a) The renal clearance (CLrenal ) of cefiderocol is assumed to be negligible in patients receiving CRRT, (b) CLnonrenal represents the CRRT patients' own remaining systemic clearance and is estimated from the observed clearance in participants with creatinine clearance (CLcr) < 15 mL/minute without undergoing hemodialysis, and (c) CLCRRT was estimated by the product of unbound (free) fraction of plasma drug concentration (fu ) and QE because the free fraction of low-molecular-weight compounds like cefiderocol (752 Da) can be completely filtered by CRRT, regardless of CRRT modality. Hence, cefiderocol CL in CRRT patients was calculated by the equation of CL = CLnonrenal + fu × QE . Accordingly, the cefiderocol dosing regimens for patients receiving CRRT in clinically relevant ranges of QE were determined with the goal of achieving an average daily area under the concentration-time curve (AUC) observed in patients not receiving CRRT. Subsequently, pharmacokinetic (PK) simulations demonstrated that cefiderocol PK profiles following the QE -based dosing in patients receiving CRRT would be similar to those in patients not receiving CRRT.


Assuntos
Terapia de Substituição Renal Contínua , Humanos , Creatinina , Antibacterianos , Estado Terminal/terapia , Terapia de Substituição Renal , Cefiderocol
3.
Clin Infect Dis ; 72(12): e1103-e1111, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33393598

RESUMO

In November 2019, the Food and Drug Administration (FDA) approved cefiderocol for the treatment of complicated urinary tract infections (cUTI) including pyelonephritis caused by susceptible gram-negative bacteria in adults with limited to no alternative treatment options based on a randomized, double-blind, noninferiority cUTI trial (APEKS-cUTI). In a randomized, open-label trial (CREDIBLE-CR) in patients with cUTI, nosocomial pneumonia, bloodstream infections, or sepsis due to carbapenem-resistant gram-negative bacteria, an increase in all-cause mortality was observed in patients treated with cefiderocol as compared to best available therapy. The cause of the increased mortality was not established, but some deaths were attributed to treatment failure. Preliminary data from a randomized, double-blind trial (APEKS-NP) in patients with nosocomial pneumonia due to carbapenem-susceptible gram-negative bacteria showed a similar rate of mortality as compared to meropenem. We describe the uncertainties and challenges in the interpretation of the CREDIBLE-CR trial and some benefit-risk considerations for the use of cefiderocol in clinical practice. Clinical Trials Registration: NCT02321800.


Assuntos
Antibacterianos , Cefalosporinas , Adulto , Antibacterianos/uso terapêutico , Bactérias Gram-Negativas , Humanos , Estados Unidos , United States Food and Drug Administration , Cefiderocol
4.
Artigo em Inglês | MEDLINE | ID: mdl-33106262

RESUMO

The U.S. Food and Drug Administration (FDA) hosted a public workshop entitled "Advancing Animal Models for Antibacterial Drug Development" on 5 March 2020. The workshop mainly focused on models of pneumonia caused by Pseudomonas aeruginosa and Acinetobacter baumannii The program included discussions from academic investigators, industry, and U.S. government scientists. The potential use of mouse, rabbit, and pig models for antibacterial drug development was presented and discussed.


Assuntos
Acinetobacter baumannii , Antibacterianos , Animais , Antibacterianos/uso terapêutico , Desenvolvimento de Medicamentos , Camundongos , Modelos Animais , Coelhos , Suínos , Estados Unidos , United States Food and Drug Administration
5.
Artigo em Inglês | MEDLINE | ID: mdl-32122895

RESUMO

Animal models of bacterial infection have been widely used to explore the in vivo activity of antibacterial drugs. These data are often submitted to the U.S. Food and Drug Administration to support human use in an investigational new drug application (IND). To better understand the range and scientific use of animal models in regulatory submissions, a database was created surveying recent pneumonia models submitted as part of IND application packages. The IND studies were compared to animal models of bacterial pneumonia published in the scientific literature over the same period of time. In this review, we analyze the key experimental design elements, such as animal species, immune status, pathogens selected, and route of administration, and study endpoints.


Assuntos
Antituberculosos/farmacologia , Modelos Animais de Doenças , Drogas em Investigação , Pneumonia Bacteriana/tratamento farmacológico , Pneumonia Bacteriana/microbiologia , Animais , Antituberculosos/uso terapêutico , Bases de Dados Factuais , Humanos , Aplicação de Novas Drogas em Teste , Estados Unidos , United States Food and Drug Administration
7.
ACS Infect Dis ; 4(11): 1635-1644, 2018 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-30067329

RESUMO

Staphylococcus aureus is the leading cause of life-threatening infections, frequently originating from unknown or deep-seated foci. Source control and institution of appropriate antibiotics remain challenges, especially with infections due to methicillin-resistant S. aureus (MRSA). In this study, we developed a radiofluorinated analog of para-aminobenzoic acid (2-[18F]F-PABA) and demonstrate that it is an efficient alternative substrate for the S. aureus dihydropteroate synthase (DHPS). 2-[18F]F-PABA rapidly accumulated in vitro within laboratory and clinical (including MRSA) strains of S. aureus but not in mammalian cells. Biodistribution in murine and rat models demonstrated localization at infection sites and rapid renal elimination. In a rat model, 2-[18F]F-PABA positron emission tomography (PET) rapidly differentiated S. aureus infection from sterile inflammation and could also detect therapeutic failures associated with MRSA. These data suggest that 2-[18F]F-PABA has the potential for translation to humans as a rapid, noninvasive diagnostic tool to identify, localize, and monitor S. aureus infections.


Assuntos
Ácido 4-Aminobenzoico/farmacologia , Staphylococcus aureus Resistente à Meticilina/isolamento & purificação , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Infecções Estafilocócicas/diagnóstico por imagem , Infecções Estafilocócicas/diagnóstico , Animais , Infecção Hospitalar/diagnóstico , Infecção Hospitalar/diagnóstico por imagem , Infecção Hospitalar/microbiologia , Feminino , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos CBA , Ratos , Ratos Sprague-Dawley
8.
J Nucl Med ; 58(1): 144-150, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27635025

RESUMO

The modern patient is increasingly susceptible to bacterial infections including those due to multidrug-resistant organisms (MDROs). Noninvasive whole-body analysis with pathogen-specific imaging technologies can significantly improve patient outcomes by rapidly identifying a source of infection and monitoring the response to treatment, but no such technology exists clinically. METHODS: We systematically screened 961 random radiolabeled molecules in silico as substrates for essential metabolic pathways in bacteria, followed by in vitro uptake in representative bacteria-Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and mycobacteria. Fluorine-labeled analogs, that could be developed as PET-based imaging tracers, were evaluated in a murine myositis model. RESULTS: We identified 3 novel, nontoxic molecules demonstrating selective bacterial uptake: para-aminobenzoic acid (PABA), with uptake in all representative bacteria including Mycobacterium tuberculosis; mannitol, with selective uptake in S. aureus and E. coli; and sorbitol, accumulating only in E. coli None accumulated in mammalian cells or heat-killed bacteria, suggesting metabolism-derived specificity. In addition to an extended bacterial panel of laboratory strains, all 3 molecules rapidly accumulated in respective clinical isolates of interest including MDROs such as methicillin-resistant S. aureus, extended-spectrum ß-lactamase-producing, and carbapenem-resistant Enterobacteriaceae. In a murine myositis model, fluorine-labeled analogs of all 3 molecules could rapidly detect and differentiate infection sites from sterile inflammation in mice (P = 0.03). Finally, 2-deoxy-2-[F-18]fluoro-d-sorbitol (18F-FDS) can be easily synthesized from 18F-FDG. PET, with 18F-FDS synthesized using current good manufacturing practice, could rapidly differentiate true infection from sterile inflammation to selectively localize E. coli infection in mice. CONCLUSION: We have developed a systematic approach that exploits unique biochemical pathways in bacteria to develop novel pathogen-specific imaging tracers. These tracers have significant potential for clinical translation to specifically detect and localize a broad range of bacteria, including MDROs.


Assuntos
Ácido 4-Aminobenzoico/farmacocinética , Bactérias/metabolismo , Infecções Bacterianas/diagnóstico por imagem , Infecções Bacterianas/microbiologia , Manitol/farmacocinética , Sorbitol/farmacocinética , Bactérias/classificação , Bactérias/citologia , Marcação por Isótopo/métodos , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/farmacocinética , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
9.
Cell Stem Cell ; 19(1): 127-38, 2016 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-27374787

RESUMO

Recent advances in genome editing have facilitated the generation of nonhuman primate (NHP) models, with potential to unmask the complex biology of human disease not revealed by rodent models. However, their broader use is hindered by the challenges associated with generation of adult NHP models as well as the cost of their production. Here, we describe the generation of a marmoset model of severe combined immunodeficiency (SCID). This study optimized zinc-finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs) to target interleukin-2 receptor subunit gamma (IL2RG) in pronuclear stage marmoset embryos. Nine of 21 neonates exhibited mutations in the IL2RG gene, concomitant with immunodeficiency, and three neonates have currently survived from 240 days to 1.8 years. Our approach demonstrates highly efficient production of founder NHP with SCID phenotypes, with promises of multiple pre-clinical and translational applications.


Assuntos
Edição de Genes , Genoma , Imunodeficiência Combinada Severa/genética , Envelhecimento/patologia , Animais , Animais Recém-Nascidos , Blastômeros/metabolismo , Cruzamento , Callithrix , Modelos Animais de Doenças , Embrião de Mamíferos/metabolismo , Fibroblastos/metabolismo , Efeito Fundador , Técnicas de Inativação de Genes , Humanos , Subunidade gama Comum de Receptores de Interleucina/metabolismo , Masculino , Mosaicismo , Fenótipo , Reprodutibilidade dos Testes , Imunodeficiência Combinada Severa/imunologia , Imunodeficiência Combinada Severa/parasitologia , Espermatozoides/metabolismo , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/metabolismo , Dedos de Zinco
10.
G3 (Bethesda) ; 6(7): 2051-61, 2016 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-27175020

RESUMO

Targeted gene mutation in the mouse is a primary strategy to understand gene function and relation to phenotype. The Knockout Mouse Project (KOMP) had an initial goal to develop a public resource of mouse embryonic stem (ES) cell clones that carry null mutations in all genes. Indeed, many useful novel mouse models have been generated from publically accessible targeted mouse ES cell lines. However, there are limitations, including incorrect targeting or cassette structure, and difficulties with germline transmission of the allele from chimeric mice. In our experience, using a small sample of targeted ES cell clones, we were successful ∼50% of the time in generating germline transmission of a correctly targeted allele. With the advent of CRISPR/Cas9 as a mouse genome modification tool, we assessed the efficiency of creating a conditional targeted allele in one gene, dedicator of cytokinesis 7 (Dock7), for which we were unsuccessful in generating a null allele using a KOMP targeted ES cell clone. The strategy was to insert loxP sites to flank either exons 3 and 4, or exons 3 through 7. By coinjecting Cas9 mRNA, validated sgRNAs, and oligonucleotide donors into fertilized eggs from C57BL/6J mice, we obtained a variety of alleles, including mice homozygous for the null alleles mediated by nonhomologous end joining, alleles with one of the two desired loxP sites, and correctly targeted alleles with both loxP sites. We also found frequent mutations in the inserted loxP sequence, which is partly attributable to the heterogeneity in the original oligonucleotide preparation.


Assuntos
Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Endonucleases/genética , Marcação de Genes/métodos , Fatores de Troca do Nucleotídeo Guanina/genética , RNA Guia de Cinetoplastídeos/genética , Alelos , Animais , Sequência de Bases , Reparo do DNA por Junção de Extremidades , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Endonucleases/metabolismo , Éxons , Feminino , Proteínas Ativadoras de GTPase , Edição de Genes , Fatores de Troca do Nucleotídeo Guanina/deficiência , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microinjeções , Mutagênese Insercional , RNA Guia de Cinetoplastídeos/metabolismo , Zigoto/citologia , Zigoto/metabolismo
11.
Antimicrob Agents Chemother ; 59(9): 5768-74, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26169396

RESUMO

Information about intralesional pharmacokinetics (PK) and spatial distribution of tuberculosis (TB) drugs is limited and has not been used to optimize dosing recommendations for new or existing drugs. While new techniques can detect drugs and their metabolites within TB granulomas, they are invasive, rely on accurate resection of tissues, and do not capture dynamic drug distribution in the tissues of interest. In this study, we assessed the in situ distribution of (11)C-labeled rifampin in live, Mycobacterium tuberculosis-infected mice that develop necrotic lesions akin to human disease. Dynamic positron emission tomography (PET) imaging was performed over 60 min after injection of [(11)C]rifampin as a microdose, standardized uptake values (SUV) were calculated, and noncompartmental analysis was used to estimate PK parameters in compartments of interest. [(11)C]rifampin was rapidly distributed to all parts of the body and quickly localized to the liver. Areas under the concentration-time curve for the first 60 min (AUC0-60) in infected and uninfected mice were similar for liver, blood, and brain compartments (P > 0.53) and were uniformly low in brain (10 to 20% of blood values). However, lower concentrations were noted in necrotic lung tissues of infected mice than in healthy lungs (P = 0.03). Ex vivo two-dimensional matrix-assisted laser desorption ionization (MALDI) imaging confirmed restricted penetration of rifampin into necrotic lung lesions. Noninvasive bioimaging can be used to assess the distribution of drugs into compartments of interest, with potential applications for TB drug regimen development.


Assuntos
Antituberculosos/farmacocinética , Mycobacterium tuberculosis/patogenicidade , Rifampina/farmacocinética , Animais , Feminino , Camundongos , Tomografia por Emissão de Pósitrons , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Tuberculose/metabolismo , Tuberculose/microbiologia
12.
Transgenic Res ; 24(2): 227-35, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25216764

RESUMO

The rabbit is a preferred model system for diverse areas of human disease research, such as hypertension and atherosclerosis, for its close resemblance to human physiology. Its larger size than that of rodents allows for more convenient physiological and surgical manipulations as well as imaging. The rapid development of nuclease technologies enables the rabbit genome to be engineered as readily as that of rats and mice, offering rabbit models a chance to make their due impact on medical research. Here, we report the efficient creation of an APOE knockout rabbit by using zinc finger nucleases. The knockout rabbits had drastically elevated cholesterol and moderately increased triglyceride levels, mimicking symptoms in human heart disease. So far the rabbit genome has been successfully modified with three nuclease technologies. With a gestation period only days longer than those of rodents, we hope additional reports on their creation and characterization will help encourage the use of rabbit models where they are most relevant to human conditions.


Assuntos
Apolipoproteínas E/genética , Aterosclerose/genética , Dedos de Zinco/genética , Animais , Aterosclerose/fisiopatologia , Colesterol/metabolismo , Modelos Animais de Doenças , Técnicas de Inativação de Genes , Genoma , Humanos , Coelhos , Triglicerídeos/metabolismo
13.
Sci Transl Med ; 6(259): 259ra146, 2014 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-25338757

RESUMO

The Enterobacteriaceae are a family of rod-shaped Gram-negative bacteria that normally inhabit the gastrointestinal tract and are the most common cause of Gram-negative bacterial infections in humans. In addition to causing serious multidrug-resistant, hospital-acquired infections, a number of Enterobacteriaceae species are also recognized as biothreat pathogens. As a consequence, new tools are urgently needed to specifically identify and localize infections due to Enterobacteriaceae and to monitor antimicrobial efficacy. In this report, we used commercially available 2-[(18)F]-fluorodeoxyglucose ((18)F-FDG) to produce 2-[(18)F]-fluorodeoxysorbitol ((18)F-FDS), a radioactive probe for Enterobacteriaceae, in 30 min. (18)F-FDS selectively accumulated in Enterobacteriaceae, but not in Gram-positive bacteria or healthy mammalian or cancer cells in vitro. In a murine myositis model, (18)F-FDS positron emission tomography (PET) rapidly differentiated true infection from sterile inflammation with a limit of detection of 6.2 ± 0.2 log10 colony-forming units (CFU) for Escherichia coli. Our findings were extended to models of mixed Gram-positive and Gram-negative thigh co-infections, brain infection, Klebsiella pneumonia, and mice undergoing immunosuppressive chemotherapy. This technique rapidly and specifically localized infections due to Enterobacteriaceae, providing a three-dimensional holistic view within the animal. Last, (18)F-FDS PET monitored the efficacy of antimicrobial treatment, demonstrating a PET signal proportionate to the bacterial burden. Therapeutic failures associated with multidrug-resistant, extended-spectrum ß-lactamase (ESBL)-producing E. coli infections were detected in real time. Together, these data show that (18)F-FDS is a candidate imaging probe for translation to human clinical cases of known or suspected infections owing to Enterobacteriaceae.


Assuntos
Infecções por Enterobacteriaceae/diagnóstico por imagem , Tomografia por Emissão de Pósitrons , Sorbitol/análogos & derivados , Animais , Anti-Infecciosos/farmacologia , Anti-Infecciosos/uso terapêutico , Neoplasias Encefálicas/diagnóstico por imagem , Linhagem Celular , Infecções por Enterobacteriaceae/tratamento farmacológico , Escherichia coli/patogenicidade , Feminino , Humanos , Imunocompetência/efeitos dos fármacos , Inflamação/patologia , Infecções por Klebsiella/diagnóstico por imagem , Infecções por Klebsiella/tratamento farmacológico , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/fisiologia , Camundongos , Testes de Sensibilidade Microbiana , Miosite/diagnóstico por imagem , Radiografia , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Nucl Med Biol ; 41(10): 777-84, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25195017

RESUMO

Nearly 20 years after the World Health Organization declared tuberculosis (TB) a global public health emergency, TB still remains a major global threat with 8.6 million new cases and 1.3 million deaths annually. Mycobacterium tuberculosis adapts to a quiescent physiological state, and is notable for complex interaction with the host, producing poorly-understood disease states ranging from latent infection to fully active disease. Of the approximately 2.5 billion people latently infected with M. tuberculosis, many will develop reactivation disease (relapse), years after the initial infection. While progress has been made on some fronts, the alarming spread of multidrug-resistant, extensively drug-resistant, and more recently totally-drug resistant strains is of grave concern. New tools are urgently needed for rapidly diagnosing TB, monitoring TB treatments and to allow unique insights into disease pathogenesis. Nuclear bioimaging is a powerful, noninvasive tool that can rapidly provide three-dimensional views of disease processes deep within the body and conduct noninvasive longitudinal assessments of the same patient. In this review, we discuss the application of nuclear bioimaging to TB, including the current state of the field, considerations for radioprobe development, study of TB drug pharmacokinetics in infected tissues, and areas of research and clinical needs that could be addressed by nuclear bioimaging. These technologies are an emerging field of research, overcome several fundamental limitations of current tools, and will have a broad impact on both basic research and patient care. Beyond diagnosis and monitoring disease, these technologies will also allow unique insights into understanding disease pathogenesis; and expedite bench-to-bedside translation of new therapeutics. Finally, since molecular imaging is readily available for humans, validated tracers will become valuable tools for clinical applications.


Assuntos
Diagnóstico por Imagem/métodos , Mycobacterium tuberculosis/isolamento & purificação , Medicina Nuclear , Tuberculose/diagnóstico , Humanos , Tuberculose/microbiologia
15.
Behav Neurosci ; 128(2): 103-9, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24773431

RESUMO

Animal models are critical for gaining insights into autism spectrum disorder (ASD). Despite their apparent advantages to mice for neural studies, rats have not been widely used for disorders of the human CNS, such as ASD, for the lack of convenient genome manipulation tools. Here we describe two of the first transgenic rat models for ASD, developed using zinc-finger nuclease (ZFN) methodologies, and their initial behavioral assessment using a rapid juvenile test battery. A syndromic and nonsyndromic rat model for ASD were created as two separate knockout rat lines with heritable disruptions in the genes encoding Fragile X mental retardation protein (FMRP) and Neuroligin3 (NLGN3). FMRP, a protein with numerous proposed functions including regulation of mRNA and synaptic protein synthesis, and NLGN3, a member of the neuroligin synaptic cell-adhesion protein family, have been implicated in human ASD. Juvenile subjects from both knockout rat lines exhibited abnormalities in ASD-relevant phenotypes including juvenile play, perseverative behaviors, and sensorimotor gating. These data provide important first evidence regarding the utility of rats as genetic models for investigating ASD-relevant genes.


Assuntos
Moléculas de Adesão Celular Neuronais/genética , Transtornos Globais do Desenvolvimento Infantil/genética , Modelos Animais de Doenças , Proteína do X Frágil da Deficiência Intelectual/genética , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Comportamento Social , Animais , Transtornos Globais do Desenvolvimento Infantil/psicologia , Masculino , Ratos , Ratos Sprague-Dawley , Ratos Transgênicos
16.
Nat Methods ; 10(7): 638-40, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23749298

RESUMO

Animal models with genetic modifications under temporal and/or spatial control are invaluable to functional genomics and medical research. Here we report the generation of tissue-specific knockout rats via microinjection of zinc-finger nucleases (ZFNs) into fertilized eggs. We generated rats with loxP-flanked (floxed) alleles and a tyrosine hydroxylase promoter-driven cre allele and demonstrated Cre-dependent gene disruption in vivo. Pronuclear microinjection of ZFNs, shown by our data to be an efficient and rapid method for creating conditional knockout rats, should also be applicable in other species.


Assuntos
Desoxirribonucleases/genética , Técnicas de Inativação de Genes/métodos , Genoma/genética , Ratos/embriologia , Ratos/genética , Transfecção/métodos , Dedos de Zinco/genética , Animais , Engenharia Genética/métodos , Ratos Transgênicos
17.
Dis Model Mech ; 6(1): 269-78, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22917926

RESUMO

The tumor suppressor TP53 plays a crucial role in cancer biology, and the TP53 gene is the most mutated gene in human cancer. Trp53 knockout mouse models have been widely used in cancer etiology studies and in search for a cure of cancer with some limitations that other model organisms might help overcome. Via pronuclear microinjection of zinc finger nucleases (ZFNs), we created a Tp53 knockout rat that contains an 11-bp deletion in exon 3, resulting in a frameshift and premature terminations in the open reading frame. In cohorts of 25 homozygous (Tp53(Δ11/Δ11)), 37 heterozygous (Tp53(Δ11/+)) and 30 wild-type rats, the Tp53(Δ11/Δ11) rats lived an average of 126 days before death or removal from study because of clinical signs of abnormality or formation of tumors. Half of Tp53(Δ11/+) were removed from study by 1 year of age because of tumor formation. Both Tp53(Δ11/+) and Tp53(Δ11/Δ11) rats developed a wide spectrum of tumors, most commonly sarcomas. Interestingly, there was a strikingly high incidence of brain lesions, especially in Tp53(Δ11/Δ11) animals. We believe that this mutant rat line will be useful in studying cancer types rarely observed in mice and in carcinogenicity assays for drug development.


Assuntos
Técnicas de Inativação de Genes/métodos , Genes p53 , Neoplasias Experimentais/genética , Animais , Animais Geneticamente Modificados , Sequência de Bases , DNA/genética , Modelos Animais de Doenças , Feminino , Fertilidade/genética , Mutação da Fase de Leitura , Heterozigoto , Homozigoto , Humanos , Masculino , Camundongos , Neoplasias Experimentais/etiologia , Neoplasias Experimentais/patologia , Gravidez , Ratos , Ratos Sprague-Dawley , Deleção de Sequência
18.
BMC Immunol ; 13: 60, 2012 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-23136839

RESUMO

BACKGROUND: Engineered zinc-finger nucleases (ZFN) represented an innovative method for the genome manipulation in vertebrates. ZFN introduced targeted DNA double strand breaks (DSB) and initiated non-homologous end joining (NHEJ) after pronuclear or cytoplasmatic microinjection into zygotes. Resulting frame shift mutations led to functional gene ablations in zebra fish, mice, pigs and also in laboratory rats. Therefore, we targeted the rat Rag1 gene essential for the V(D)J recombination within the immunoglobulin production process and for the differentiation of mature B and T lymphocytes to generate an immunodeficient rat model in the LEW/Ztm strain. RESULTS: After microinjection of Rag1 specific ZFN mRNAs in 623 zygotes of inbred LEW/Ztm rats 59 offspring were born from which one carried a 4 bp deletion. This frame shift mutation led to a premature stop codon and a subsequently truncated Rag1 protein confirmed by the loss of the full-length protein in Western Blot analysis. Truncation of the Rag1 protein was characterized by the complete depletion of mature B cells. The remaining T cell population contained mature CD4+/CD3+/TCRαß+ as well as CD8+/CD3+/TCRαß+ positive lymphocytes accompanied by a compensatory increase of natural killer cells in the peripheral blood. Reduction of T cell development in Rag1 mutant rats was associated with a hypoplastic thymus that lacked follicular structures. Histological evaluation also revealed the near-complete absence of lymphocytes in spleen and lymph nodes in the immunodeficient Rag1 mutant rat. CONCLUSION: The Rag1 mutant rat will serve as an important model for transplantation studies. Furthermore, it may be used as a model for reconstitution experiments related to the immune system, particularly with respect to different populations of human lymphocytes, natural killer cells and autoimmune phenomena.


Assuntos
Endonucleases/metabolismo , Marcação de Genes , Proteínas de Homeodomínio/genética , Dedos de Zinco , Alelos , Sequência de Aminoácidos , Animais , Sequência de Bases , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Embrião de Mamíferos/metabolismo , Citometria de Fluxo , Mutação da Fase de Leitura/genética , Genótipo , Células Germinativas , Proteínas de Homeodomínio/química , Humanos , Depleção Linfocítica , Tecido Linfoide/patologia , Camundongos , Dados de Sequência Molecular , Ratos , Ratos Endogâmicos Lew , Ratos Mutantes
19.
Endocrinology ; 153(11): 5622-8, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22948215

RESUMO

Leptin, a cytokine-like hormone secreted mainly by adipocytes, regulates various pathways centered on food intake and energy expenditure, including insulin sensitivity, fertility, immune system, and bone metabolism. Here, using zinc finger nuclease technology, we created the first leptin knockout rat. Homozygous leptin null rats are obese with significantly higher serum cholesterol, triglyceride, and insulin levels than wild-type controls. Neither gender produced offspring despite of repeated attempts. The leptin knockout rats also have depressed immune system. In addition, examination by microcomputed tomography of the femurs of the leptin null rats shows a significant increase in both trabecular bone mineral density and bone volume of the femur compared with wild-type littermates. Our model should be useful for many different fields of studies, such as obesity, diabetes, and bone metabolism-related illnesses.


Assuntos
Peso Corporal/genética , Ingestão de Alimentos/genética , Leptina/genética , Obesidade/genética , Ratos Transgênicos , Animais , Densidade Óssea/genética , Colesterol/sangue , Metabolismo Energético/genética , Fêmur/metabolismo , Insulina/sangue , Leptina/metabolismo , Obesidade/metabolismo , Fenótipo , Ratos , Triglicerídeos/sangue , Dedos de Zinco
20.
Nat Biotechnol ; 29(1): 64-7, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21151125

RESUMO

Gene targeting is indispensible for reverse genetics and the generation of animal models of disease. The mouse has become the most commonly used animal model system owing to the success of embryonic stem cell-based targeting technology, whereas other mammalian species lack convenient tools for genome modification. Recently, microinjection of engineered zinc-finger nucleases (ZFNs) in embryos was used to generate gene knockouts in the rat and the mouse by introducing nonhomologous end joining (NHEJ)-mediated deletions or insertions at the target site. Here we use ZFN technology in embryos to introduce sequence-specific modifications (knock-ins) by means of homologous recombination in Sprague Dawley and Long-Evans hooded rats and FVB mice. This approach enables precise genome engineering to generate modifications such as point mutations, accurate insertions and deletions, and conditional knockouts and knock-ins. The same strategy can potentially be applied to many other species for which genetic engineering tools are needed.


Assuntos
Desoxirribonucleases de Sítio Específico do Tipo II/genética , Embrião de Mamíferos/metabolismo , Marcação de Genes , Engenharia Genética/métodos , Recombinação Genética , Dedos de Zinco/genética , Animais , Sequência de Bases , Células-Tronco Embrionárias , Técnicas de Inativação de Genes/métodos , Camundongos , Microinjeções , Dados de Sequência Molecular , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes de Fusão/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...