Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 2890, 2023 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-37210560

RESUMO

Mutations in a protein active site can lead to dramatic and useful changes in protein activity. The active site, however, is sensitive to mutations due to a high density of molecular interactions, substantially reducing the likelihood of obtaining functional multipoint mutants. We introduce an atomistic and machine-learning-based approach, called high-throughput Functional Libraries (htFuncLib), that designs a sequence space in which mutations form low-energy combinations that mitigate the risk of incompatible interactions. We apply htFuncLib to the GFP chromophore-binding pocket, and, using fluorescence readout, recover >16,000 unique designs encoding as many as eight active-site mutations. Many designs exhibit substantial and useful diversity in functional thermostability (up to 96 °C), fluorescence lifetime, and quantum yield. By eliminating incompatible active-site mutations, htFuncLib generates a large diversity of functional sequences. We envision that htFuncLib will be used in one-shot optimization of activity in enzymes, binders, and other proteins.


Assuntos
Proteínas , Domínio Catalítico , Biblioteca Gênica , Proteínas/genética , Mutação , Fluorescência , Proteínas de Fluorescência Verde/metabolismo
2.
PLoS Comput Biol ; 15(8): e1007318, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31461441

RESUMO

Membrane-protein design is an exciting and increasingly successful research area which has led to landmarks including the design of stable and accurate membrane-integral proteins based on coiled-coil motifs. Design of topologically more complex proteins, such as most receptors, channels, and transporters, however, demands an energy function that balances contributions from intra-protein contacts and protein-membrane interactions. Recent advances in water-soluble all-atom energy functions have increased the accuracy in structure-prediction benchmarks. The plasma membrane, however, imposes different physical constraints on protein solvation. To understand these constraints, we recently developed a high-throughput experimental screen, called dsTßL, and inferred apparent insertion energies for each amino acid at dozens of positions across the bacterial plasma membrane. Here, we express these profiles as lipophilicity energy terms in Rosetta and demonstrate that the new energy function outperforms previous ones in modelling and design benchmarks. Rosetta ab initio simulations starting from an extended chain recapitulate two-thirds of the experimentally determined structures of membrane-spanning homo-oligomers with <2.5Å root-mean-square deviation within the top-predicted five models (available online: http://tmhop.weizmann.ac.il). Furthermore, in two sequence-design benchmarks, the energy function improves discrimination of stabilizing point mutations and recapitulates natural membrane-protein sequences of known structure, thereby recommending this new energy function for membrane-protein modelling and design.


Assuntos
Proteínas de Membrana/química , Biologia Computacional , Simulação por Computador , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Ensaios de Triagem em Larga Escala/métodos , Lipídeos/química , Proteínas de Membrana/metabolismo , Modelos Moleculares , Simulação de Dinâmica Molecular , Conformação Proteica , Engenharia de Proteínas , Software , Solubilidade , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...