Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Fish Biol Fish ; : 1-17, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37360579

RESUMO

The global COVID-19 pandemic resulted in many jurisdictions implementing orders restricting the movements of people to inhibit virus transmission, with recreational angling often either not permitted or access to fisheries and/or related infrastructure being prevented. Following the lifting of restrictions, initial angler surveys and licence sales suggested increased participation and effort, and altered angler demographics, but with evidence remaining limited. Here, we overcome this evidence gap by identifying temporal changes in angling interest, licence sales, and angling effort in world regions by comparing data in the 'pre-pandemic' (up to and including 2019); 'acute pandemic' (2020) and 'COVID-acclimated' (2021) periods. We then identified how changes can inform the development of more resilient and sustainable recreational fisheries. Interest in angling (measured here as angling-related internet search term volumes) increased substantially in all regions during 2020. Patterns in licence sales revealed marked increases in some countries during 2020 but not in others. Where licence sales increased, this was rarely sustained in 2021; where there were declines, these related to fewer tourist anglers due to movement restrictions. Data from most countries indicated a younger demographic of people who participated in angling in 2020, including in urban areas, but this was not sustained in 2021. These short-lived changes in recreational angling indicate efforts to retain younger anglers could increase overall participation levels, where efforts can target education in appropriate angling practices and create more urban angling opportunities. These efforts would then provide recreational fisheries with greater resilience to cope with future global crises, including facilitating the ability of people to access angling opportunities during periods of high societal stress. Supplementary Information: The online version contains supplementary material available at 10.1007/s11160-023-09784-5.

2.
PNAS Nexus ; 1(3): pgac075, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36741432

RESUMO

Human activities are the leading cause of biological invasions that cause ecologic and economic damage around the world. Aquatic invasive species (AIS) are often spread by recreational anglers who visit two or more bodies of water within a short time frame. Movement data from anglers are, therefore, critical to predicting, preventing, and monitoring the spread of AIS. However, the lack of broad-scale movement data has restricted efforts to large and popular lakes or small geographic extents. Here, we show that recreational fishing apps are an abundant, convenient, and relatively comprehensive source of "big" movement data across the contiguous United States. Our analyses revealed a dense network of angler movements that was dramatically more interconnected and extensive than the network that is formed naturally by rivers and streams. Short-distanced movements by anglers combined to form invasion superhighways that spanned the contiguous United States. We also identified possible invasion fronts and invaded hub lakes that may be superspreaders for two relatively common aquatic invaders. Our results provide unique insight into the national network through which AIS may be spread, increase opportunities for interjurisdictional coordination that is essential to addressing the problem of AIS, and highlight the important role that anglers can play in providing accurate data and preventing invasions. The advantages of mobile devices as both sources of data and a means of engaging the public in their shared responsibility to prevent invasions are probably general to all forms of tourism and recreation that contribute to the spread of invasive species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...