Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 86(9): 095103, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26429476

RESUMO

We describe a method to make even insulation layers for high-pressure laser-heated diamond-anvil cell samples using stepped anvils. The method works for both single-sided and double-sided laser heating using solid or fluid insulation. The stepped anvils are used as matched pairs or paired with a flat culet anvil to make gasket insulation layers and not actually used at high pressures; thus, their longevity is ensured. We compare the radial temperature gradients and Soret diffusion of iron between self-insulating samples and samples produced with stepped anvils and find that less pronounced Soret diffusion occurs in samples with even insulation layers produced by stepped anvils.

2.
J Phys Condens Matter ; 24(21): 216003, 2012 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-22543670

RESUMO

Neutron diffraction and electrical transport measurements have been made on the heavy rare earth metal holmium at high pressures and low temperatures in order to elucidate its transition from a paramagnetic (PM) to a helical antiferromagnetic (AFM) ordered phase as a function of pressure. The electrical resistance measurements show a change in the resistance slope as the temperature is lowered through the antiferromagnetic Néel temperature. The temperature of this antiferromagnetic transition decreases from approximately 122 K at ambient pressure at a rate of -4.9 K GPa(-1) up to a pressure of 9 GPa, whereupon the PM-to-AFM transition vanishes for higher pressures. Neutron diffraction measurements as a function of pressure at 89 and 110 K confirm the incommensurate nature of the phase transition associated with the antiferromagnetic ordering of the magnetic moments in a helical arrangement and that the ordering occurs at similar pressures as determined from the resistance results for these temperatures.


Assuntos
Hólmio/química , Difração de Nêutrons , Transporte de Elétrons , Campos Magnéticos , Teste de Materiais , Transição de Fase , Pressão
3.
J Phys Condens Matter ; 23(12): 122201, 2011 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-21389565

RESUMO

High pressure x-ray diffraction and electrical resistance measurements have been carried out on SrFe(2)As(2) to a pressure of 23 GPa and temperature of 10 K using a synchrotron source and designer diamond anvils. At ambient temperature, a phase transition from the tetragonal phase to a collapsed tetragonal (CT) phase is observed at 10 GPa under non-hydrostatic conditions. The experimental relation that T-CT transition pressure for 122 Fe-based superconductors is dependent on ambient pressure volume is affirmed. The superconducting transition temperature is observed at 32 K at 1.3 GPa and decreases rapidly with a further increase of pressure in the region where the T-CT transition occurs. Our results suggest that T(C) falls below 10 K in the pressure range of 10-18 GPa where the CT phase is expected to be stable.

4.
J Phys Condens Matter ; 22(18): 185702, 2010 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-21393689

RESUMO

We have investigated structural and magnetic phase transitions under high pressures in a quaternary rare-earth transition-metal arsenide oxide NdCoAsO compound that is isostructural to the high temperature superconductor parent phase NdFeAsO. The four-probe electrical resistance measurements carried out in a designer diamond anvil cell show that the ferromagnetic Curie temperature and antiferromagnetic Néel temperature increase with an increase in pressure. High pressure x-ray diffraction studies using a synchrotron source show a structural phase transition from a tetragonal phase to a new crystallographic phase at a pressure of 23 GPa at 300 K. The NdCoAsO sample remained antiferromagnetic and non-superconducting down to 10 K and up to the highest pressure achieved in this experiment, 53 GPa. A P-T phase diagram for NdCoAsO is presented from ambient conditions to P = 53 GPa and T = 10 K.

5.
J Phys Condens Matter ; 22(29): 292202, 2010 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-21399295

RESUMO

The crystal structure and electrical resistance of structurally layered EuFe(2)As(2) have been studied up to 70 GPa and down to a temperature of 10 K, using a synchrotron x-ray source and designer diamond anvils. The room temperature compression of the tetragonal phase of EuFe(2)As(2) (I4/mmm) results in an increase in the a-axis length and a rapid decrease in the c-axis length with increasing pressure. This anomalous compression reaches a maximum at 8 GPa and the tetragonal lattice behaves normally above 10 GPa, with a nearly constant c/a axial ratio. The rapid rise in the superconducting transition temperature (T(c)) to 41 K with increasing pressure is correlated with this anomalous compression, and a decrease in T(c) is observed above 10 GPa. We present P-V data or the equation of state for EuFe(2)As(2) both in the ambient tetragonal phase and in the high pressure collapsed tetragonal phase up to 70 GPa.

6.
J Phys Condens Matter ; 21(23): 232201, 2009 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-21825575

RESUMO

High pressure superconductivity in iron-based superconductor FeSe(0.5)Te(0.5) has been studied up to 15 GPa and 10 K using an eight probe designer diamond anvil in a diamond anvil cell device. Four probe electrical resistance measurements show the onset of superconductivity (T(c)) at 14 K at ambient pressure with T(c) increasing with increasing pressure to 19 K at a pressure of 3.6 GPa. At higher pressures beyond 3.6 GPa, T(c) decreases and extrapolation suggests non-superconducting behavior above 10 GPa. The loss of superconductivity coincides with the pressure induced disordering of the Fe(SeTe)(4) tetrahedra reported at 11 GPa in x-ray diffraction studies at ambient temperature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...