Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Soft Matter ; 10(47): 9511-22, 2014 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-25351908

RESUMO

The self-assembling behaviour of 2.6 nm thin PbCO3 nanoplatelets with discorectangular shape and uniform width and thickness occurring after their formation in nonionic water-in-oil microemulsions has been investigated using synchrotron small angle X-ray scattering (SAXS) and (scanning) transmission electron microscopy ((S)TEM). The presence of attractive depletion forces originating from the ubiquitous microemulsion droplets triggers a new type of superstructure at low particle concentration. Instead of the universally observed formation of face-to-face assembled lamellar mesostructures, the nanosheets self-organise into extended ribbon structures, whereby each on top lying sheet is displaced by a constant shift in the length and width directions leading to a so far unprecedented staggered zigzag-type stack assembly with restricted height. This type of stacking gives rise to a complex interference pattern in the isotropic small angle scattering of the stacked ribbon assemblies (SRAs) in reverse micellar solution. Different to the, for lamellar-structured nanosheets typical, diffraction peaks at multiples of the wave vector corresponding to one particular repeat distance, the scattering peaks measured in this study are asymmetric, displaying a shoulder on their low wave vector side. The asymmetric shape of the observed face-to-face correlation peaks indicates that the SRAs do not extend in one direction only. Their scattering behaviour is analysed by expanding the Kratky-Porod structure factor for stacking plates into three dimensions. High-angle annular dark-field (HAADF)-STEM tilt series have complementary been acquired to retrieve three-dimensional structural information on the SRAs in the dry state and to confirm the model used for the refinement of the SAXS data.

2.
Nanotechnology ; 24(8): 085603, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23385879

RESUMO

We report on the technology and growth optimization of GaAs/InAs core/shell nanowires. The GaAs nanowire cores were grown selectively by metal organic vapor phase epitaxy (SA-MOVPE) on SiO(2) masked GaAs (111)B templates. These were structured by a complete thermal nanoimprint lithography process, which is presented in detail. The influence of the subsequent InAs shell growth temperature on the shell morphology and crystal structure was investigated by scanning and transmission electron microscopy in order to obtain the desired homogeneous and uniform InAs overgrowth. At the optimal growth temperature, the InAs shell adopted the morphology and crystal structure of the underlying GaAs core and was perfectly uniform.

3.
Phys Chem Chem Phys ; 11(17): 3127-37, 2009 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-19370207

RESUMO

The ammonolysis of beta-Ga(2)O(3) to alpha-GaN and the oxidation of alpha-GaN to beta-Ga(2)O(3) have been studied by means of in situ X-ray absorption spectroscopy (XAS), transmission electron microscopy (TEM) and scanning electron microscopy (SEM). In situ X-ray absorption measurements on polycrystalline powder particles on the gallium K-edge during both reactions give detailed information about the reaction kinetics. We were able to extract this kinetics by fitting linear combinations of beta-Ga(2)O(3) and alpha-GaN spectra only. The kinetics of the ammonolysis can be described well by an extended Johnson-Mehl-Avrami-Kolmogorow model, while the oxidation kinetics can be modelled by a shrinking core model. Investigations by means of TEM and SEM support the assumptions in both models. Our experimental results and the models are discussed in terms of the reaction energetics and the reaction mechanisms.

4.
Acta Crystallogr A ; 58(Pt 4): 308-15, 2002 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12089453

RESUMO

Energy-filtered Debye-Scherrer electron powder data have been successfully employed to determine the structure of nanocrystalline anatase (TiO2). The performed structure analysis includes determining the unit cell, space group, solving the structure via direct methods from extracted intensities and refining the structure using the Rietveld technique. The refined structural parameters for space group I4(1)/amd are a = 3.872 (2), c = 9.616 (5) A with titanium at 0.5,0.75,0.375 and oxygen at 0.5,0.75,0.1618 (6). The obtained structure indicates low internal stress as judged from the almost regular geometry of the TiO6 building blocks. Striking resemblance with the anatase structure determined previously by Burdett, Hughbanks, Miller, Richardson & Smith [J. Am. Chem. Soc. (1987). 109, 3639-3646] from neutron diffraction on coarse-grained material gives strong support for the correctness of the structure determined here. The result of the present study shows that the methods originally developed for determining structures from X-ray powder data work equally well with data from electron powder diffraction. This may open the window for structural investigations on the vast number of nanocrystalline materials and thin films whose structures are difficult to determine by X-ray diffraction since they are frequently only available in small quantities.

5.
Acta Crystallogr A ; 56(Pt 1): 29-35, 2000 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-10874414

RESUMO

The structure of a new modification of Ti2Se, the beta-phase, and several related inorganic crystal structures containing elements with atomic numbers between 16 and 40 have been solved by quasi-automatic direct methods from single-crystal electron diffraction patterns of nanometre-size crystals, using the kinematical approximation. The crystals were several thousand times smaller than the minimum size required for single-crystal X-ray diffraction. Atomic coordinates were found with an average accuracy of 0.2 A or better. Experimental data were obtained by standardized techniques for recording and quantifying electron diffraction patterns. The SIR97 program for solving crystal structures from three-dimensional X-ray diffraction data by direct methods was modified to work also with two-dimensional electron diffraction data.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...