Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 7(3): e28056, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22479303

RESUMO

A large body of in vitro evolution work establishes the utility of biopolymer libraries comprising 10(10) to 10(15) distinct molecules for the discovery of nanomolar-affinity ligands to proteins. Small-molecule libraries of comparable complexity will likely provide nanomolar-affinity small-molecule ligands. Unlike biopolymers, small molecules can offer the advantages of cell permeability, low immunogenicity, metabolic stability, rapid diffusion and inexpensive mass production. It is thought that such desirable in vivo behavior is correlated with the physical properties of small molecules, specifically a limited number of hydrogen bond donors and acceptors, a defined range of hydrophobicity, and most importantly, molecular weights less than 500 Daltons. Creating a collection of 10(10) to 10(15) small molecules that meet these criteria requires the use of hundreds to thousands of diversity elements per step in a combinatorial synthesis of three to five steps. With this goal in mind, we have reported a set of mesofluidic devices that enable DNA-programmed combinatorial chemistry in a highly parallel 384-well plate format. Here, we demonstrate that these devices can translate DNA genes encoding 384 diversity elements per coding position into corresponding small-molecule gene products. This robust and efficient procedure yields small molecule-DNA conjugates suitable for in vitro evolution experiments.


Assuntos
DNA/genética , Biblioteca Gênica , Biossíntese de Proteínas/genética , Bibliotecas de Moléculas Pequenas , Técnicas de Química Combinatória/instrumentação , Técnicas de Química Combinatória/métodos , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Reprodutibilidade dos Testes
2.
PLoS One ; 7(3): e32299, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22479318

RESUMO

Hybrid combinatorial chemistry strategies that use DNA as an information-carrying medium are proving to be powerful tools for molecular discovery. In order to extend these efforts, we present a highly parallel format for DNA-programmed chemical library synthesis. The new format uses a standard microwell plate footprint and is compatible with commercially available automation technology. It can accommodate a wide variety of combinatorial synthetic schemes with up to 384 different building blocks per chemical step. We demonstrate that fluidic routing of DNA populations in the highly parallel format occurs with excellent specificity, and that chemistry on DNA arrayed into 384 well plates proceeds robustly, two requirements for the high-fidelity translation and efficient in vitro evolution of small molecules.


Assuntos
Técnicas de Química Combinatória/instrumentação , Técnicas de Química Combinatória/métodos , DNA/genética , Southern Blotting , Biblioteca Gênica , Hibridização de Ácido Nucleico , Reprodutibilidade dos Testes , Bibliotecas de Moléculas Pequenas
3.
J Am Chem Soc ; 129(43): 13137-43, 2007 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-17918937

RESUMO

The recognition and catalytic properties of biopolymers derive from an elegant evolutionary mechanism, whereby the genetic material encoding molecules with superior functional attributes survives a selective pressure and is propagated to subsequent generations. This process is routinely mimicked in vitro to generate nucleic-acid or peptide ligands and catalysts. Recent advances in DNA-programmed organic synthesis have raised the possibility that evolutionary strategies could also be used for small-molecule discovery, but the idea remains unproven. Here, using DNA-programmed combinatorial chemistry, a collection of 100 million distinct compounds is synthesized and subjected to selection for binding to the N-terminal SH3 domain of the proto-oncogene Crk. Over six generations, the molecular population converges to a small number of novel SH3 domain ligands. Remarkably, the hits bind with affinities similar to those of peptide SH3 ligands isolated from phage libraries of comparable complexity. The evolutionary approach has the potential to drastically simplify and accelerate small-molecule discovery.


Assuntos
Modelos Biológicos , Biblioteca Gênica , Ligantes , Estrutura Molecular , Prolina/química , Proteínas Proto-Oncogênicas c-crk/metabolismo , Triptofano/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...