Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 271
Filtrar
1.
Biophys J ; 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38824390

RESUMO

Reactions that occur within the lipid membrane involve, at minimum, ternary complexes among the enzyme, substrate, and lipid. For many systems, the impact of the lipid in regulating activity or oligomerization state is poorly understood. Here we used small angle neutron scattering (SANS) to structurally characterize an intramembrane aspartyl protease (IAP), a class of membrane-bound enzymes that use membrane-embedded aspartate residues to hydrolyze transmembrane segments of biologically relevant substrates. We focused on an IAP ortholog from the halophilic archaeon Haloferax volcanii (HvoIAP). HvoIAP purified in n-dodecyl-ß-D-maltoside (DDM) fractionates on size exclusion chromatography (SEC) as two fractions. We show that in DDM, the smaller SEC fraction is consistent with a compact HvoIAP monomer. Molecular dynamics flexible fitting conducted on an Alphafold2-generated monomer produces a model in which loops are compact alongside the membrane-embedded helices. In contrast, SANS data collected on the second SEC fraction indicates an oligomer consistent with an elongated assembly of discrete HvoIAP monomers. Analysis of in-line SEC-SANS data of the HvoIAP oligomer, the first such experiment to be conducted on a membrane protein at Oak Ridge National Lab (ORNL), shows a diversity of elongated and spherical species, including one consistent with the tetrameric assembly reported for the MmIAP crystal structure not observed previously in solution. Reconstitution of monomeric HvoIAP into bicelles increases enzyme activity and results in the assembly of HvoIAP to a species with similar dimensions as the ensemble of oligomers isolated from DDM. Our study reveals lipid-mediated HvoIAP self-assembly and demonstrates the utility of in-line SEC-SANS in elucidating oligomerization states of small membrane proteins.

2.
bioRxiv ; 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38853997

RESUMO

Human manganese superoxide dismutase (MnSOD) plays a crucial role in controlling levels of reactive oxygen species (ROS) by converting superoxide (O 2 •- ) to molecular oxygen (O 2 ) and hydrogen peroxide (H 2 O 2 ) with proton-coupled electron transfers (PCETs). The reactivity of human MnSOD is determined by the state of a key catalytic residue, Tyr34, that becomes post-translationally inactivated by nitration in various diseases associated with mitochondrial dysfunction. We previously reported that Tyr34 has an unusual pK a due to its proximity to the Mn metal and undergoes cyclic deprotonation and protonation events to promote the electron transfers of MnSOD. To shed light on the role of Tyr34 MnSOD catalysis, we performed neutron diffraction, X-ray spectroscopy, and quantum chemistry calculations of Tyr34Phe MnSOD in various enzymatic states. The data identifies the contributions of Tyr34 in MnSOD activity that support mitochondrial function and presents a thorough characterization of how a single tyrosine modulates PCET catalysis.

3.
bioRxiv ; 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38328249

RESUMO

Human manganese superoxide dismutase (MnSOD) is a crucial oxidoreductase that maintains the vitality of mitochondria by converting O 2 ●- to O 2 and H 2 O 2 with proton-coupled electron transfers (PCETs). Since changes in mitochondrial H 2 O 2 concentrations are capable of stimulating apoptotic signaling pathways, human MnSOD has evolutionarily gained the ability to be highly inhibited by its own product, H 2 O 2 . A separate set of PCETs is thought to regulate product inhibition, though mechanisms of PCETs are typically unknown due to difficulties in detecting the protonation states of specific residues that coincide with the electronic state of the redox center. To shed light on the underlying mechanism, we combined neutron diffraction and X-ray absorption spectroscopy of the product-bound, trivalent, and divalent states to reveal the all-atom structures and electronic configuration of the metal. The data identifies the product-inhibited complex for the first time and a PCET mechanism of inhibition is constructed.

4.
Res Sq ; 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38405788

RESUMO

Human manganese superoxide dismutase (MnSOD) is a crucial oxidoreductase that maintains the vitality of mitochondria by converting O2∙- to O2 and H2O2 with proton-coupled electron transfers (PCETs). Since changes in mitochondrial H2O2 concentrations are capable of stimulating apoptotic signaling pathways, human MnSOD has evolutionarily gained the ability to be highly inhibited by its own product, H2O2. A separate set of PCETs is thought to regulate product inhibition, though mechanisms of PCETs are typically unknown due to difficulties in detecting the protonation states of specific residues that coincide with the electronic state of the redox center. To shed light on the underlying mechanism, we combined neutron diffraction and X-ray absorption spectroscopy of the product-bound, trivalent, and divalent states to reveal the all-atom structures and electronic configuration of the metal. The data identifies the product-inhibited complex for the first time and a PCET mechanism of inhibition is constructed.

7.
J Struct Biol ; 215(4): 108028, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37704014

RESUMO

NADPH-dependent assimilatory sulfite reductase (SiR) from Escherichia coli performs a six-electron reduction of sulfite to the bioavailable sulfide. SiR is composed of a flavoprotein (SiRFP) reductase subunit and a hemoprotein (SiRHP) oxidase subunit. There is no known high-resolution structure of SiR or SiRFP, thus we do not yet fully understand how the subunits interact to perform their chemistry. Here, we used small-angle neutron scattering to understand the impact of conformationally restricting the highly mobile SiRFP octamer into an electron accepting (closed) or electron donating (open) conformation, showing that SiR remains active, flexible, and asymmetric even with these conformational restrictions. From these scattering data, we model the first solution structure of SiRFP. Further, computational modeling of the N-terminal 52 amino acids that are responsible for SiRFP oligomerization suggests an eight-helical bundle tethers together the SiRFP subunits to form the SiR core. Finally, mass spectrometry analysis of the closed SiRFP variant show that SiRFP is capable of inter-molecular domain crossover, in which the electron donating domain from one polypeptide is able to interact directly with the electron accepting domain of another polypeptide. This structural characterization suggests that SiR performs its high-volume electron transfer through both inter- and intramolecular pathways between SiRFP domains and, thus, cis or trans transfer from reductase to oxidase subunits. Such highly redundant potential for electron transfer makes this system a potential target for designing synthetic enzymes.


Assuntos
Escherichia coli , Oxirredutases , Sulfito Redutase (NADPH)/química , NADP/metabolismo , Escherichia coli/metabolismo , Peptídeos
8.
Protein Sci ; 32(10): e4772, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37646172

RESUMO

Characterizing structural ensembles of intrinsically disordered proteins (IDPs) and intrinsically disordered regions (IDRs) of proteins is essential for studying structure-function relationships. Due to the different neutron scattering lengths of hydrogen and deuterium, selective labeling and contrast matching in small-angle neutron scattering (SANS) becomes an effective tool to study dynamic structures of disordered systems. However, experimental timescales typically capture measurements averaged over multiple conformations, leaving complex SANS data for disentanglement. We hereby demonstrate an integrated method to elucidate the structural ensemble of a complex formed by two IDRs. We use data from both full contrast and contrast matching with residue-specific deuterium labeling SANS experiments, microsecond all-atom molecular dynamics (MD) simulations with four molecular mechanics force fields, and an autoencoder-based deep learning (DL) algorithm. From our combined approach, we show that selective deuteration provides additional information that helps characterize structural ensembles. We find that among the four force fields, a99SB-disp and CHARMM36m show the strongest agreement with SANS and NMR experiments. In addition, our DL algorithm not only complements conventional structural analysis methods but also successfully differentiates NMR and MD structures which are indistinguishable on the free energy surface. Lastly, we present an ensemble that describes experimental SANS and NMR data better than MD ensembles generated by one single force field and reveal three clusters of distinct conformations. Our results demonstrate a new integrated approach for characterizing structural ensembles of IDPs.

9.
Commun Chem ; 6(1): 162, 2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37532884

RESUMO

Pyridoxal 5'-phosphate (PLP)-dependent enzymes utilize a vitamin B6-derived cofactor to perform a myriad of chemical transformations on amino acids and other small molecules. Some PLP-dependent enzymes, such as serine hydroxymethyltransferase (SHMT), are promising drug targets for the design of small-molecule antimicrobials and anticancer therapeutics, while others have been used to synthesize pharmaceutical building blocks. Understanding PLP-dependent catalysis and the reaction specificity is crucial to advance structure-assisted drug design and enzyme engineering. Here we report the direct determination of the protonation states in the active site of Thermus thermophilus SHMT (TthSHMT) in the internal aldimine state using room-temperature joint X-ray/neutron crystallography. Conserved active site architecture of the model enzyme TthSHMT and of human mitochondrial SHMT (hSHMT2) were compared by obtaining a room-temperature X-ray structure of hSHMT2, suggesting identical protonation states in the human enzyme. The amino acid substrate serine pathway through the TthSHMT active site cavity was tracked, revealing the peripheral and cationic binding sites that correspond to the pre-Michaelis and pseudo-Michaelis complexes, respectively. At the peripheral binding site, the substrate is bound in the zwitterionic form. By analyzing the observed protonation states, Glu53, but not His residues, is proposed as the general base catalyst, orchestrating the retro-aldol transformation of L-serine into glycine.

10.
J Patient Saf ; 19(7): 484-492, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37493368

RESUMO

OBJECTIVES: Resident and fellow engagement in patient safety event investigations (PSEIs) can benefit both the clinical learning environment's ability to improve patient care and learners' problem-solving skills. The goals of this collaborative were to increase resident and fellow participation in these investigations and improve PSEI quality. METHODS: This collaborative involved 18 sites-8 sites that had participated in a similar previous collaborative (cohort I) and 10 "new" sites (cohort II). The 18-month collaborative included face-to-face and virtual learning sessions, check-ins, and coaching calls. A validated assessment tool measured PSEI quality, and sites tracked the percentage of first-year residents and fellows included in a PSEI. RESULTS: Sixteen of the 18 sites completed the 18-month collaborative. Baseline was no first-year resident or fellow participation in a PSEI. Among these 16 clinical learning environments, 1237 early learners participated in a PSEI by the end of the collaborative. Six of these 16 sites (38%) reached the goal of 100% participation of first-year residents and fellows. As a percentage of total first-year residents and fellows, larger institutions had less resident and fellow participation. Six of the 9 cohort II sites submitted PSEIs for independent review at 6 months and again at the end of the collaborative. The PSEI quality scores increased from 5.9 ± 1.8 to 8.2 ± 0.8 ( P ≤ 0.05). CONCLUSIONS: It is possible to include all residents and fellows in PSEIs. Patient safety event investigation quality can improve through resident and fellow participation, use of standardized processes during training and investigations, and review of PSEI quality scores with a validated tool.


Assuntos
Internato e Residência , Tutoria , Humanos , Educação de Pós-Graduação em Medicina , Segurança do Paciente , Aprendizagem , Competência Clínica
11.
NPJ Microgravity ; 9(1): 39, 2023 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-37270576

RESUMO

The NASA mission Perfect Crystals used the microgravity environment on the International Space Station (ISS) to grow crystals of human manganese superoxide dismutase (MnSOD)-an oxidoreductase critical for mitochondrial vitality and human health. The mission's overarching aim is to perform neutron protein crystallography (NPC) on MnSOD to directly visualize proton positions and derive a chemical understanding of the concerted proton electron transfers performed by the enzyme. Large crystals that are perfect enough to diffract neutrons to sufficient resolution are essential for NPC. This combination, large and perfect, is hard to achieve on Earth due to gravity-induced convective mixing. Capillary counterdiffusion methods were developed that provided a gradient of conditions for crystal growth along with a built-in time delay that prevented premature crystallization before stowage on the ISS. Here, we report a highly successful and versatile crystallization system to grow a plethora of crystals for high-resolution NPC.

13.
Acta Crystallogr D Struct Biol ; 79(Pt 5): 420-434, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37092970

RESUMO

The contrast-variation method in small-angle neutron scattering (SANS) is a uniquely powerful technique for determining the structure of individual components in biomolecular systems containing regions of different neutron scattering length density ρ. By altering the ρ of the target solute and the solvent through judicious incorporation of deuterium, the scattering of desired solute features can be highlighted. Most contrast-variation methods focus on highlighting specific bulk solute elements, but not on how the scattering at specific scattering vectors q, which are associated with specific structural distances, changes with contrast. Indeed, many systems exhibit q-dependent contrast effects. Here, a method is presented for calculating both bulk contrast-match points and q-dependent contrast using 3D models with explicit solute and solvent atoms and SASSENA, an explicit-atom SANS calculator. The method calculates the bulk contrast-match points within 2.4% solvent D2O accuracy for test protein-nucleic acid and lipid nanodisc systems. The method incorporates a general model for the incorporation of deuterium at non-exchangeable sites that was derived by performing mass spectrometry on green fluorescent protein. The method also decomposes the scattering profile into its component parts and identifies structural features that change with contrast. The method is readily applicable to a variety of systems, will expand the understanding of q-dependent contrast matching and will aid in the optimization of next-generation neutron scattering experiments.


Assuntos
Difração de Nêutrons , Nêutrons , Deutério/química , Espalhamento a Baixo Ângulo , Difração de Nêutrons/métodos , Solventes , Biologia
14.
Nat Commun ; 14(1): 1733, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36977673

RESUMO

Direct-acting antivirals are needed to combat coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). The papain-like protease (PLpro) domain of Nsp3 from SARS-CoV-2 is essential for viral replication. In addition, PLpro dysregulates the host immune response by cleaving ubiquitin and interferon-stimulated gene 15 protein from host proteins. As a result, PLpro is a promising target for inhibition by small-molecule therapeutics. Here we design a series of covalent inhibitors by introducing a peptidomimetic linker and reactive electrophile onto analogs of the noncovalent PLpro inhibitor GRL0617. The most potent compound inhibits PLpro with kinact/KI = 9,600 M-1 s-1, achieves sub-µM EC50 values against three SARS-CoV-2 variants in mammalian cell lines, and does not inhibit a panel of human deubiquitinases (DUBs) at >30 µM concentrations of inhibitor. An X-ray co-crystal structure of the compound bound to PLpro validates our design strategy and establishes the molecular basis for covalent inhibition and selectivity against structurally similar human DUBs. These findings present an opportunity for further development of covalent PLpro inhibitors.


Assuntos
COVID-19 , Hepatite C Crônica , Animais , Humanos , Papaína/metabolismo , Peptídeo Hidrolases/metabolismo , SARS-CoV-2/metabolismo , Antivirais/farmacologia , Antivirais/química , Inibidores de Proteases , Mamíferos/metabolismo
16.
J Infect Dis ; 227(8): 932-938, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-36196502

RESUMO

BACKGROUND: Women with human immunodeficiency virus (WWH) have an elevated risk for human papillomavirus (HPV)-associated anal cancer. Primary anal cancer screening results from this population could inform practice guidelines. METHODS: In total, 381 WWH with anal cytology screening, high-risk HPV (hrHPV) testing and genital (cervical or vaginal) cotesting within 6 months were identified during 2012-2019. Those with anal cytology of atypical squamous cells of undetermined significance (ASCUS) or worse underwent high-resolution anoscopy and biopsy. Independent predictors of anal hrHPV, HPV16, and histological anal high-grade squamous intraepithelial lesions (aHSIL) were identified using adjusted logistic regression models. RESULTS: Prevalence of anal hrHPV, HPV16, and ASCUS or worse cytology was 61%, 13%, and 68%. Histological aHSIL was detected in 42% of WWH with ASCUS or worse anal cytology. Prevalence of genital hrHPV, HPV16, and ASCUS or worse cytology was 30%, 4%, and 28%. Genital hrHPV predicted anal hrHPV (odds ratio [OR], 5.05), while genital HPV16 predicted anal HPV16 (OR, 9.52). Genital hrHPV and anal HPV16 predicted histological aHSIL (ORs, 2.78 and 10.9). CONCLUSIONS: Anal HPV disease was highly prevalent in this primary screening cohort of WWH. While genital screening results predicted anal disease, rates of isolated anal HPV disease were substantial, supporting universal anal cancer screening for this population.


Assuntos
Células Escamosas Atípicas do Colo do Útero , Infecções por Papillomavirus , Neoplasias do Colo do Útero , Humanos , Feminino , HIV , Infecções por Papillomavirus/complicações , Infecções por Papillomavirus/diagnóstico , Infecções por Papillomavirus/epidemiologia , Detecção Precoce de Câncer/métodos , Papillomavirus Humano , Papillomavirus Humano 16 , Papillomaviridae/genética
17.
IUCrJ ; 9(Pt 5): 610-624, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36071813

RESUMO

Room-temperature macromolecular crystallography allows protein structures to be determined under close-to-physiological conditions, permits dynamic freedom in protein motions and enables time-resolved studies. In the case of metalloenzymes that are highly sensitive to radiation damage, such room-temperature experiments can present challenges, including increased rates of X-ray reduction of metal centres and site-specific radiation-damage artefacts, as well as in devising appropriate sample-delivery and data-collection methods. It can also be problematic to compare structures measured using different crystal sizes and light sources. In this study, structures of a multifunctional globin, dehaloperoxidase B (DHP-B), obtained using several methods of room-temperature crystallographic structure determination are described and compared. Here, data were measured from large single crystals and multiple microcrystals using neutrons, X-ray free-electron laser pulses, monochromatic synchrotron radiation and polychromatic (Laue) radiation light sources. These approaches span a range of 18 orders of magnitude in measurement time per diffraction pattern and four orders of magnitude in crystal volume. The first room-temperature neutron structures of DHP-B are also presented, allowing the explicit identification of the hydrogen positions. The neutron data proved to be complementary to the serial femtosecond crystallography data, with both methods providing structures free of the effects of X-ray radiation damage when compared with standard cryo-crystallography. Comparison of these room-temperature methods demonstrated the large differences in sample requirements, data-collection time and the potential for radiation damage between them. With regard to the structure and function of DHP-B, despite the results being partly limited by differences in the underlying structures, new information was gained on the protonation states of active-site residues which may guide future studies of DHP-B.

18.
Chem Sci ; 13(34): 10057-10065, 2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36128223

RESUMO

Pyridoxal 5'-phosphate (PLP)-dependent enzymes have been extensively studied for their ability to fine-tune PLP cofactor electronics to promote a wide array of chemistries. Neutron crystallography offers a straightforward approach to studying the electronic states of PLP and the electrostatics of enzyme active sites, responsible for the reaction specificities, by enabling direct visualization of hydrogen atom positions. Here we report a room-temperature joint X-ray/neutron structure of aspartate aminotransferase (AAT) with pyridoxamine 5'-phosphate (PMP), the cofactor product of the first half reaction catalyzed by the enzyme. Between PMP NSB and catalytic Lys258 Nζ amino groups an equally shared deuterium is observed in an apparent low-barrier hydrogen bond (LBHB). Density functional theory calculations were performed to provide further evidence of this LBHB interaction. The structural arrangement and the juxtaposition of PMP and Lys258, facilitated by the LBHB, suggests active site preorganization for the incoming ketoacid substrate that initiates the second half-reaction.

20.
Res Sq ; 2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35898342

RESUMO

Direct-acting antivirals are needed to combat coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). The papain-like protease (PLpro) domain of Nsp3 from SARS-CoV-2 is essential for viral replication. In addition, PLpro dysregulates the host immune response by cleaving ubiquitin and interferon-stimulated gene 15 protein (ISG15) from host proteins. As a result, PLpro is a promising target for inhibition by small-molecule therapeutics. Here we have designed a series of covalent inhibitors by introducing a peptidomimetic linker and reactive electrophile onto analogs of the noncovalent PLpro inhibitor GRL0617. The most potent compound inhibited PLpro with k inact /K I = 10,000 M - 1 s - 1 , achieved sub-µM EC 50 values against three SARS-CoV-2 variants in mammalian cell lines, and did not inhibit a panel of human deubiquitinases at > 30 µM concentrations of inhibitor. An X-ray co-crystal structure of the compound bound to PLpro validated our design strategy and established the molecular basis for covalent inhibition and selectivity against structurally similar human DUBs. These findings present an opportunity for further development of covalent PLpro inhibitors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...