Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(43): e202309362, 2023 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-37640689

RESUMO

Ergothioneine (ESH) and ovothiol A (OSHA) are two natural thiol-histidine derivatives. ESH has been implicated as a longevity vitamin and OSHA inhibits the proliferation of hepatocarcinoma. The key biosynthetic step of ESH and OSHA in the aerobic pathways is the O2 -dependent C-S bond formation catalyzed by non-heme iron enzymes (e.g., OvoA in ovothiol biosynthesis), but due to the lack of identification of key reactive intermediate the mechanism of this novel reaction is unresolved. In this study, we report the identification and characterization of a kinetically competent S=1 iron(IV) intermediate supported by a four-histidine ligand environment (three from the protein residues and one from the substrate) in enabling C-S bond formation in OvoA from Methyloversatilis thermotoleran, which represents the first experimentally observed intermediate spin iron(IV) species in non-heme iron enzymes. Results reported in this study thus set the stage to further dissect the mechanism of enzymatic oxidative C-S bond formation in the OSHA biosynthesis pathway. They also afford new opportunities to study the structure-function relationship of high-valent iron intermediates supported by a histidine rich ligand environment.


Assuntos
Histidina , Ferro , Histidina/metabolismo , Ligantes , Catálise , Estresse Oxidativo
2.
Chem Sci ; 13(12): 3589-3598, 2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35432880

RESUMO

Mononuclear non-heme iron enzymes are a large class of enzymes catalyzing a wide-range of reactions. In this work, we report that a non-heme iron enzyme in Methyloversatilis thermotolerans, OvoAMtht, has two different activities, as a thiol oxygenase and a sulfoxide synthase. When cysteine is presented as the only substrate, OvoAMtht is a thiol oxygenase. In the presence of both histidine and cysteine as substrates, OvoAMtht catalyzes the oxidative coupling between histidine and cysteine (a sulfoxide synthase). Additionally, we demonstrate that both substrates and the active site iron's secondary coordination shell residues exert exquisite control over the dual activities of OvoAMtht (sulfoxide synthase vs. thiol oxygenase activities). OvoAMtht is an excellent system for future detailed mechanistic investigation on how metal ligands and secondary coordination shell residues fine-tune the iron-center electronic properties to achieve different reactivities.

3.
Front Neurosci ; 15: 780841, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35082594

RESUMO

Purpose: To investigate how modulating ocular sympathetic activity affects progression of choroidal neovascularization (CNV), a hallmark feature of wet age-related macular degeneration (AMD). Methods: In the first of two studies, Brown Norway rats underwent laser-induced CNV and were assigned to one of the following groups: daily eye drops of artificial tears (n = 10; control group); daily eye drops of the ß-adrenoreceptor agonist isoproterenol (n = 10); daily eye drops of the ß-adrenoreceptor antagonist propranolol (n = 10); sympathetic internal carotid nerve (ICN) transection 6 weeks prior to laser-induced CNV (n = 10). In the second study, rats underwent laser-induced CNV followed by ICN transection at different time points: immediately after the laser injury (n = 6), 7 days after the laser injury (n = 6), and sham surgery 7 days after the laser injury (n = 6; control group). All animals were euthanized 14 days after laser application. CNV development was quantified with fluorescein angiography and optical coherence tomography (in vivo), as well as lesion volume analysis using 3D confocal reconstruction (postmortem). Angiogenic growth factor protein levels in the choroid were measured with ELISA. Results: In the first study, blocking ocular sympathetic activity through pharmacological or surgical manipulation led to a 75% or 70% reduction in CNV lesion volume versus the control group, respectively (P < 0.001). Stimulating ocular sympathetic activity with isoproterenol also led to a reduction in lesion volume, but only by 27% versus controls (P < 0.05). VEGF protein levels in the choroid were elevated in the three treatment groups (P < 0.01). In the second study, fluorescein angiography and CNV lesion volume analysis indicated that surgically removing the ocular sympathetic supply inhibited progression of laser-induced CNV, regardless of whether ICN transection was performed on the same day or 7 days after the laser injury. Conclusion: Surgical and pharmacological block of ocular sympathetic activity can inhibit progression of CNV in a rat model. Therefore, electrical block of ICN activity could be a potential bioelectronic medicine strategy for treating wet AMD.

4.
Front Cell Dev Biol ; 8: 504, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32656213

RESUMO

Focused ultrasound (FUS) is a rapidly developing stimulus technology with the potential to uncover novel mechanosensory dependent cellular processes. Since it is non-invasive, it holds great promise for future therapeutic applications in patients used either alone or as a complement to boost existing treatments. For example, FUS stimulation causes invasive but not non-invasive cancer cell lines to exhibit marked activation of calcium signaling pathways. Here, we identify the membrane channel PANNEXIN1 (PANX1) as a mediator for activation of calcium signaling in invasive cancer cells. Knockdown of PANX1 decreases calcium signaling in invasive cells, while PANX1 overexpression enhances calcium elevations in non-invasive cancer cells. We demonstrate that FUS may directly stimulate mechanosensory PANX1 localized in endoplasmic reticulum to evoke calcium release from internal stores. This process does not depend on mechanosensory stimulus transduction through an intact cytoskeleton and does not depend on plasma membrane localized PANX1. Plasma membrane localized PANX1, however, plays a different role in mediating the spread of intercellular calcium waves via ATP release. Additionally, we show that FUS stimulation evokes cytokine/chemokine release from invasive cancer cells, suggesting that FUS could be an important new adjuvant treatment to improve cancer immunotherapy.

5.
Biochemistry ; 59(30): 2813-2822, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32659080

RESUMO

The first step of the kynurenine pathway for l-tryptophan (l-Trp) degradation is catalyzed by heme-dependent dioxygenases, tryptophan 2,3-dioxygenase (TDO) and indoleamine 2,3-dioxygenase. In this work, we employed stopped-flow optical absorption spectroscopy to study the kinetic behavior of the Michaelis complex of Cupriavidus metallidurans TDO (cmTDO) to improve our understanding of oxygen activation and initial oxidation of l-Trp. On the basis of the stopped-flow results, rapid freeze-quench (RFQ) experiments were performed to capture and characterize this intermediate by Mössbauer spectroscopy. By incorporating the chlorite dismutase-chlorite system to produce high concentrations of solubilized O2, we were able to capture the Michaelis complex of cmTDO in a nearly quantitative yield. The RFQ-Mössbauer results confirmed the identity of the Michaelis complex as an O2-bound ferrous species. They revealed remarkable similarities between the electronic properties of the Michaelis complex and those of the O2 adduct of myoglobin. We also found that the decay of this reactive intermediate is the rate-limiting step of the catalytic reaction. An inverse α-secondary substrate kinetic isotope effect was observed with a kH/kD of 0.87 ± 0.03 when (indole-d5)-l-Trp was employed as the substrate. This work provides an important piece of spectroscopic evidence of the chemical identity of the Michaelis complex of bacterial TDO.


Assuntos
Biocatálise , Triptofano Oxigenase/química , Cupriavidus/enzimologia , Isótopos , Cinética , Espectrofotometria Ultravioleta , Espectroscopia de Mossbauer , Análise Espectral , Fatores de Tempo , Triptofano/metabolismo
6.
Inorg Chem ; 59(14): 10223-10233, 2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-32602712

RESUMO

The BthA protein from the microorganism Burkholderia thailandensis contains two hemes with axial His/OH2 and His/Tyr coordinations separated by the closest interheme distance of 14 Å. BthA has a similar structure and belongs to the same family of multiheme cytochrome c peroxidases as MauG, which performs long-range oxidation of the partner protein methylamine dehydrogenase. Magnetic Mössbauer spectroscopy of the diferric state of BthA corroborates previous structural work identifying a high-spin (His/OH2) peroxidatic heme and a low-spin (His/Tyr) electron transfer heme. Unlike MauG, addition of H2O2 fully converts the diferric form of BthA to a stable 2e- oxidized state, allowing a new assessment of this state. The peroxidatic heme is found to be oxidized to a canonical compound II, S = 1 oxoiron(IV) heme. In contrast, the electronic properties of the oxidized His/Tyr heme are puzzling. The isomer shift of the His/Tyr heme (0.17 mm/s) is close to that of the precursor S = 1/2 Fe3+ heme (0.21 mm/s) which suggests oxidation of the Tyr. However, the spin-dipolar hyperfine coupling constants are found here to be the same as those for the ferryl peroxidatic heme, indicating that the His/Tyr heme is also a compound II, S = 1 Fe4+ heme and ruling out oxidation of the Tyr. DFT calculations indicate that the unusually high isomer shift is not attributable to the rare axial His/Tyr heme coordination. The calculations are only compatible with spectroscopy for an unusually long Fe4+-OTyr distance, which is presumably under the influence of the protein environment of the His/Tyr heme moiety in the H2O2 oxidized state of the protein. The results offer new insights into how high valence intermediates can be tuned by the protein environment for performing long-range oxidation.


Assuntos
Proteínas de Bactérias/química , Heme/química , Hemeproteínas/química , Histidina/química , Tirosina/química , Burkholderia/química , Teoria da Densidade Funcional , Peróxido de Hidrogênio/química , Ferro/química , Modelos Químicos , Oxirredução , Espectroscopia de Mossbauer
7.
J Am Chem Soc ; 142(27): 11804-11817, 2020 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-32489096

RESUMO

High-valent nonheme FeIV-oxido species are key intermediates in biological oxidation, and their properties are proposed to be influenced by the unique microenvironments present in protein active sites. Microenvironments are regulated by noncovalent interactions, such as hydrogen bonds (H-bonds) and electrostatic interactions; however, there is little quantitative information about how these interactions affect crucial properties of high valent metal-oxido complexes. To address this knowledge gap, we introduced a series of FeIV-oxido complexes that have the same S = 2 spin ground state as those found in nature and then systematically probed the effects of noncovalent interactions on their electronic, structural, and vibrational properties. The key design feature that provides access to these complexes is the new tripodal ligand [poat]3-, which contains phosphinic amido groups. An important structural aspect of [FeIVpoat(O)]- is the inclusion of an auxiliary site capable of binding a Lewis acid (LAII); we used this unique feature to further modulate the electrostatic environment around the Fe-oxido unit. Experimentally, studies confirmed that H-bonds and LAII s can interact directly with the oxido ligand in FeIV-oxido complexes, which weakens the Fe═O bond and has an impact on the electronic structure. We found that relatively large vibrational changes in the Fe-oxido unit correlate with small structural changes that could be difficult to measure, especially within a protein active site. Our work demonstrates the important role of noncovalent interactions on the properties of metal complexes, and that these interactions need to be considered when developing effective oxidants.


Assuntos
Compostos de Ferro/química , Óxidos/química , Teoria da Densidade Funcional , Ácidos de Lewis/química , Conformação Molecular
8.
J Am Chem Soc ; 142(28): 11978-11982, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32564595

RESUMO

BthA is a diheme enzyme that is a member of the bacterial cytochrome c peroxidase superfamily, capable of generating a highly unusual Fe(IV)Fe(IV)═O oxidation state, known to be responsible for long-range oxidative chemistry in the enzyme MauG. Here, we show that installing a canonical Met ligand in lieu of the Tyr found at the heme of MauG associated with electron transfer, results in a construct that yields an unusually stable Fe(IV)═O porphyrin at the peroxidatic heme. This state is spontaneously formed at ambient conditions using either molecular O2 or H2O2. The resulting data illustrate how a ferryl iron, with unforeseen stability, may be achieved in biology.


Assuntos
Proteínas de Bactérias/metabolismo , Citocromo-c Peroxidase/metabolismo , Ferro/metabolismo , Porfirinas/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação , Citocromo-c Peroxidase/química , Citocromo-c Peroxidase/genética , Ferro/química , Modelos Moleculares , Mutação , Porfirinas/química
9.
Invest Ophthalmol Vis Sci ; 60(13): 4303-4309, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31618767

RESUMO

Purpose: To investigate specific effects of denervation and stimulation of the internal carotid nerve (ICN) on the choroid and retina. Methods: Female Sprague Dawley rats underwent unilateral ICN transection (n = 20) or acute ICN electrical stimulation (n = 7). Rats in the denervation group were euthanized 6 weeks after nerve transection, and eyes were analyzed for changes in choroidal vascularity (via histomorphometry) or angiogenic growth factors and inflammatory markers (via ELISA). Rats in the stimulation group received acute ICN electrical stimulation with a bipolar cuff electrode over a range of stimulus amplitudes, frequencies, and pulse widths. Choroidal blood flow and pupil diameter were monitored before, during, and after stimulation. Results: Six weeks after unilateral ICN transection, sympathectomized choroids exhibited increased vascularity, defined as the percentage of choroidal surface area occupied by blood vessel lumina. Vascular endothelial growth factor (VEGF) and VEGF receptor-2 (VEGFR-2) protein levels in denervated choroids were 61% and 124% higher than in contralateral choroids, respectively. TNF-α levels in denervated retinas increased by 3.3-fold relative to levels in contralateral retinas. In animals undergoing acute ICN electrical stimulation, mydriasis and reduced choroidal blood flow were observed in the ipsilateral eye. The magnitude of the reduction in blood flow correlated positively with stimulus frequency. Conclusions: Modulation of ICN activity reveals a potential role of the ocular sympathetic system in regulating endpoints related to neovascular diseases of the eye.


Assuntos
Artéria Carótida Interna/inervação , Corioide/irrigação sanguínea , Simpatectomia , Sistema Nervoso Simpático/cirurgia , Animais , Biomarcadores/metabolismo , Corioide/metabolismo , Estimulação Elétrica , Ensaio de Imunoadsorção Enzimática , Feminino , Pupila/fisiologia , Ratos , Ratos Sprague-Dawley , Retina/metabolismo , Gânglio Cervical Superior/fisiologia , Sistema Nervoso Simpático/fisiologia , Fator de Necrose Tumoral alfa/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
10.
Nat Commun ; 10(1): 1101, 2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30846684

RESUMO

Bacterial diheme peroxidases represent a diverse enzyme family with functions that range from hydrogen peroxide (H2O2) reduction to post-translational modifications. By implementing a sequence similarity network (SSN) of the bCCP_MauG superfamily, we present the discovery of a unique diheme peroxidase BthA conserved in all Burkholderia. Using a combination of magnetic resonance, near-IR and Mössbauer spectroscopies and electrochemical methods, we report that BthA is capable of generating a bis-Fe(IV) species previously thought to be a unique feature of the diheme enzyme MauG. However, BthA is not MauG-like in that it catalytically converts H2O2 to water, and a 1.54-Å resolution crystal structure reveals striking differences between BthA and other superfamily members, including the essential residues for both bis-Fe(IV) formation and H2O2 turnover. Taken together, we find that BthA represents a previously undiscovered class of diheme enzymes, one that stabilizes a bis-Fe(IV) state and catalyzes H2O2 turnover in a mechanistically distinct manner.


Assuntos
Proteínas de Bactérias/metabolismo , Burkholderia/enzimologia , Hemeproteínas/metabolismo , Peroxidases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Burkholderia/genética , Domínio Catalítico , Cristalografia por Raios X , Estabilidade Enzimática , Hemeproteínas/química , Hemeproteínas/genética , Ferro/química , Cinética , Modelos Moleculares , Oxirredução , Peroxidases/química , Peroxidases/genética , Conformação Proteica
11.
Inorg Chem ; 58(3): 2099-2108, 2019 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-30667223

RESUMO

High-valent Fe-OH species are important intermediates in hydroxylation chemistry. Such complexes have been implicated in mechanisms of oxygen-activating enzymes and have thus far been observed in Compound II of sulfur-ligated heme enzymes like cytochrome P450. Attempts to synthetically model such species have thus far seen relatively little success. Here, the first synthetic FeIVOH n complex has been generated and spectroscopically characterized as either [LFeIVOH]- or [LFeIVOH2]0, where H4L = Me4C2(NHCOCMe2NHCO)2CMe2 is a variant of a tetra-amido macrocyclic ligand (TAML). The steric bulk provided by the replacement of the aryl group with the -CMe2CMe2- unit in this TAML variant prevents dimerization in all oxidation states over a wide pH range, thus allowing the generation of FeIVOH n in near quantitative yield from oxidation of the [LFeIIIOH2]- precursor.

12.
Chem Sci ; 9(31): 6540-6547, 2018 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-30310585

RESUMO

The design of molecular complexes of earth-abundant first-row transition metals that can catalyze multi-electron C-H bond activation processes is of interest for achieving efficient, low-cost syntheses of target molecules. To overcome the propensity of these metals to perform single-electron processes, redox-active ligands have been utilized to provide additional electron equivalents. Herein, we report the synthesis of a novel redox active ligand, [ibaps]3-, which binds to transition metals such as FeII and CoII in a meridional fashion through the three anionic nitrogen atoms and provides additional coordination sites for other ligands. In this study, the neutral bidentate ligand 2,2'-bipyridine (bpy) was used to complete the coordination spheres of the metal ions and form NEt4[MII(ibaps)bpy] (M = Fe (1) or Co (1-Co)) salts. The FeII salt exhibited rich electrochemical properties and could be chemically oxidized by 1 and 2 equiv. of ferrocenium to form singly and doubly oxidized species, respectively. The reactivity of 1 towards intramolecular C-H bond amination of aryl azides at benzylic and aliphatic carbon centers was explored, and moderate to good yields of the resulting indoline products were obtained.

13.
Inorg Chem ; 57(21): 13341-13350, 2018 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-30299920

RESUMO

Hydrogen bonds (H-bonds) within the secondary coordination sphere are often invoked as essential noncovalent interactions that lead to productive chemistry in metalloproteins. Incorporating these types of effects within synthetic systems has proven a challenge in molecular design that often requires the use of rigid organic scaffolds to support H-bond donors or acceptors. We describe the preparation and characterization of a new hybrid tripodal ligand ([H2pout]3-) that contains two monodeprotonated urea groups and one phosphinic amide. The urea groups serve as H-bond donors, while the phosphinic amide group serves as a single H-bond acceptor. The [H2pout]3- ligand was utilized to stabilize a series of Mn-hydroxido complexes in which the oxidation state of the metal center ranges from 2+ to 4+. The molecular structure of the MnIII-OH complex demonstrates that three intramolecular H-bonds involving the hydroxido ligand are formed. Additional evidence for the formation of intramolecular H-bonds was provided by vibrational spectroscopy in which the energy of the O-H vibration supports its assignment as an H-bond donor. The stepwise oxidation of [MnIIH2pout(OH)]2- to its higher oxidized analogs was further substantiated by electrochemical measurements and results from electronic absorbance and electron paramagnetic resonance spectroscopies. Our findings illustrate the utility of controlling both the primary and secondary coordination spheres to achieve structurally similar Mn-OH complexes with varying oxidation states.

14.
Angew Chem Int Ed Engl ; 57(49): 16010-16014, 2018 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-30353620

RESUMO

Hydrogen bonds (H-bonds) have been shown to modulate the chemical reactivities of iron centers in iron-containing dioxygen-activating enzymes and model complexes. However, few examples are available that investigate how systematic changes in intramolecular H-bonds within the secondary coordination sphere influence specific properties of iron intermediates, such as iron-oxido/hydroxido species. Here, we used 57 Fe nuclear resonance vibrational spectroscopy (NRVS) to probe the Fe-O/OH vibrations in a series of FeIII -hydroxido and FeIV/III -oxido complexes with varying H-bonding networks but having similar trigonal bipyramidal primary coordination spheres. The data show that even subtle changes in the H-bonds to the Fe-O/OH units result in significant changes in their vibrational frequencies, thus demonstrating the utility of NRVS in studying the effect of the secondary coordination sphere to the reactivities of iron complexes.


Assuntos
Hidróxidos/química , Compostos de Ferro/química , Óxidos/química , Ligação de Hidrogênio , Isótopos de Ferro , Espectroscopia de Ressonância Magnética , Conformação Molecular , Vibração
15.
Ophthalmic Surg Lasers Imaging Retina ; 49(9): e65-e74, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30222821

RESUMO

BACKGROUND AND OBJECTIVE: To evaluate a stereological method in optical coherence tomography (OCT) as an in vivo volume measurement of laser-induced choroidal neovascularization (L-CNV) lesion size. PATIENTS AND METHODS: Laser photocoagulation was applied in rats to rupture Bruch's membrane and induce L-CNV. In vivo OCT images of neovascular lesions were acquired with a spectral-domain OCT system at days 0, 3, 7, 10, and 14 after laser surgery. A stereological image-processing method was used to calculate lesion volumes from the OCT images. Rats were euthanized at day 14, and confocal microscopy was used to obtain accurate volume measurements of the lesions ex vivo. Lesion sizes calculated from OCT and confocal were compared. RESULTS: In vivo assessment by OCT allowed three distinct stages of L-CNV to be visualized: the initial early reaction, neovascular proliferation, and regression. At day 14, correlations between OCT and confocal lesion volumes showed a positive association (Pearson's r = 0.50, P < .01). Except for the largest lesions, volumes measured by OCT were statistically similar to those measured by the confocal gold standard (P = .90). CONCLUSION: The stereological approach used to measure neovascular lesion volume from OCT images offers an accurate means to track L-CNV lesion size in vivo. [Ophthalmic Surg Lasers Imaging Retina. 2018;49:e65-e74.].


Assuntos
Corioide/irrigação sanguínea , Neovascularização de Coroide/diagnóstico , Terapia com Luz de Baixa Intensidade/efeitos adversos , Tomografia de Coerência Óptica/métodos , Animais , Neovascularização de Coroide/etiologia , Modelos Animais de Doenças , Angiofluoresceinografia/métodos , Fundo de Olho , Degeneração Macular/diagnóstico , Degeneração Macular/cirurgia , Masculino , Ratos , Ratos Endogâmicos BN
16.
Ann Biomed Eng ; 46(1): 48-59, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29086222

RESUMO

In recent years, ultrasound has gained attention in new biological applications due to its ability to induce specific biological responses at the cellular level. Although the biophysical mechanisms underlying the interaction between ultrasound and cells are not fully understood, many agree on a pivotal role of Ca2+ signaling through mechanotransduction pathways. Because Ca2+ regulates a vast range of downstream cellular processes, a better understanding of how ultrasound influences Ca2+ signaling could lead to new applications for ultrasound. In this study, we investigated the mechanism of ultrasound-induced Ca2+ mobilization in human mesenchymal stem cells using 47 MHz focused ultrasound to stimulate single cells at low intensities (~ 110 mW/cm2). We found that ultrasound exposure triggers opening of connexin 43 hemichannels on the plasma membrane, causing release of ATP into the extracellular space. That ATP then binds to G-protein-coupled P2Y1 purinergic receptors on the membrane, in turn activating phospholipase C, which evokes production of inositol trisphosphate and release of Ca2+ from intracellular stores.


Assuntos
Cálcio/metabolismo , Conexina 43/metabolismo , Células-Tronco Mesenquimais/efeitos da radiação , Ondas Ultrassônicas , Sobrevivência Celular , Células Cultivadas , Humanos , Células-Tronco Mesenquimais/metabolismo
17.
ACS Catal ; 8(12): 11704-11715, 2018 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-31263628

RESUMO

Flavo-diiron proteins (FDPs) are widespread in anaerobic bacteria, archaea, and protozoa, where they serve as the terminal components of dioxygen and nitric oxide reductive scavenging pathways. FDPs contain an N,O-ligated diiron site adjacent to a flavin mononucleotide (FMN) cofactor. The diiron site is structurally similar to those in hemerythrin, ribonucleotide reductase, and methane monooxygenase. However, only FDPs turn over NO to N2O at significant rates and yields. Previous studies revealed sequential binding of two NO molecules to the diferrous site, forming mono- and dinitrosyl intermediates leading to N2O formation. In the present work, these mono- and dinitrosyl intermediates have been characterized by EPR and Mössbauer spectroscopies and DFT calculations. Our results show that the iron proximal to the cofactor binds the first NO to form the diiron mononitrosyl complex, implying the iron distal to the FMN binds the second NO to form the diiron dinitrosyl intermediate. The exchange-coupling constants, J (H = JS1·S2), were found to differ substantially, +17 cm-1 for the diiron mononitrosyl and +60 cm-1 for the diiron dinitrosyl. Notwithstanding this large difference, our findings indicate retention of at least one hydroxo bridge throughout the NOR catalytic cycle. The Mossbauer hyperfine parameters and DFT calculations confirmed a semibridging NO- ligand in the mononitrosyl intermediate that lowers the exchange parameter. The DFT calculations on the dinitrosyl intermediate suggest a contribution to J from direct exchange between the S = 1 spins on the NO- ligands, which could initiate N-N bond formation. Our results provide insight into why FDPs are the only known nonheme diiron enzymes that competently turn over NO to N2O.

18.
Inorg Chem ; 56(22): 14118-14128, 2017 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-29112385

RESUMO

Bimetallic complexes are important sites in metalloproteins but are often difficult to prepare synthetically. We have previously introduced an approach to form discrete bimetallic complexes with MII-(µ-OH)-FeIII (MII = Mn, Fe) cores using the tripodal ligand N,N',N″-[2,2',2″-nitrilotris(ethane-2,1-diyl)]tris(2,4,6-trimethylbenzenesulfonamido) ([MST]3-). This series is extended to include the rest of the late 3d transition metal ions (MII = Co, Ni, Cu, Zn). All of the bimetallic complexes have similar spectroscopic and structural properties that reflect little change despite varying the MII centers. Magnetic studies performed on the complexes in solution using electron paramagnetic resonance spectroscopy showed that the observed spin states varied incrementally from S = 0 through S = 5/2; these results are consistent with antiferromagnetic coupling between the high-spin MII and FeIII centers. However, the difference in the MII ion occupancy yielded only slight changes in the magnetic exchange coupling strength, and all complexes had J values ranging from +26(4) to +35(3) cm-1.

19.
J Am Chem Soc ; 139(34): 12009-12019, 2017 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-28756660

RESUMO

Flavo-diiron proteins (FDPs) are non-heme iron containing enzymes that are widespread in anaerobic bacteria, archaea, and protozoa, serving as the terminal components to dioxygen and nitric oxide reductive scavenging pathways in these organisms. FDPs contain a dinuclear iron active site similar to that in hemerythrin, ribonucleotide reductase, and methane monooxygenase, all of which can bind NO and O2. However, only FDP competently turns over NO to N2O. Here, EPR and Mössbauer spectroscopies allow electronic characterization of the diferric and diferrous species of FDP. The exchange-coupling constant J (Hex = JS1·S2) was found to increase from +20 cm-1 to +32 cm-1 upon reduction of the diferric to the diferrous species, indicative of (1) at least one hydroxo bridge between the iron ions for both states and (2) a change to the diiron core structure upon reduction. In comparison to characterized diiron proteins and synthetic complexes, the experimental values were consistent with a dihydroxo bridged diferric core, which loses one hydroxo bridge upon reduction. DFT calculations of these structures gave values of J and Mössbauer parameters in agreement with experiment. Although the crystal structure shows a hydrogen bond between the iron bound aspartate and the bridging solvent molecule, the DFT calculations of structures consistent with the crystal structure gave calculated values of J incompatible with the spectroscopic results. We conclude that the crystal structure of the diferric state does not represent the frozen solution structure and that a mono-µ-hydroxo diferrous species is the catalytically functional state that reacts with NO and O2. The new EPR spectroscopic probe of the diferric state indicated that the diferric structure of FDP prior to and immediately after turnover with NO are flavin mononucleotide (FMN) dependent, implicating an additional proton transfer role for FMN in turnover of NO.


Assuntos
Flavoproteínas/química , Ferro/química , Thermotoga maritima/enzimologia , Domínio Catalítico , Espectroscopia de Ressonância de Spin Eletrônica , Compostos Férricos/química , Modelos Moleculares , Teoria Quântica , Espectroscopia de Mossbauer , Thermotoga maritima/química
20.
Front Oncol ; 7: 161, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28824873

RESUMO

Cancer cells undergo a number of biophysical changes as they transform from an indolent to an aggressive state. These changes, which include altered mechanical and electrical properties, can reveal important diagnostic information about disease status. Here, we introduce a high-throughput, functional technique for assessing cancer cell invasion potential, which works by probing for the mechanically excitable phenotype exhibited by invasive cancer cells. Cells are labeled with fluorescent calcium dye and imaged during stimulation with low-intensity focused ultrasound, a non-contact mechanical stimulus. We show that cells located at the focus of the stimulus exhibit calcium elevation for invasive prostate (PC-3 and DU-145) and bladder (T24/83) cancer cell lines, but not for non-invasive cell lines (BPH-1, PNT1A, and RT112/84). In invasive cells, ultrasound stimulation initiates a calcium wave that propagates from the cells at the transducer focus to other cells, over distances greater than 1 mm. We demonstrate that this wave is mediated by extracellular signaling molecules and can be abolished through inhibition of transient receptor potential channels and inositol trisphosphate receptors, implicating these proteins in the mechanotransduction process. If validated clinically, our technology could provide a means to assess tumor invasion potential in cytology specimens, which is not currently possible. It may therefore have applications in diseases such as bladder cancer, where cytologic diagnosis of tumor invasion could improve clinical decision-making.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...