Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Vasc Surg ; 63(5): 1351-9, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-25701497

RESUMO

OBJECTIVE: The natural response to arterial occlusive disease is enlargement of collaterals; however, the molecular factors that control collateralization are not well understood. The gene p27(Kip1) (p27) affects human response to arterial injury. Previous studies have shown that overexpression of p27 inhibits vascular endothelial and vascular smooth muscle cell (VSMC) proliferation and angiogenesis. To test the hypothesis that knockout of p27 would improve collateralization in reaction to ischemia, we performed in vivo and in vitro experiments using p27 knockout (p27(-/-)) and wild-type (wt) mice. METHODS: Hindlimb ischemia was induced by left femoral artery ligation in p27(-/-) and wt (C57BL/6) female mice. The mice underwent weekly laser Doppler perfusion imaging of the footpads until sacrifice on postoperative day 28 followed by microcomputed tomography scanning of both hindlimbs. VSMCs were isolated from p27(-/-) and wt mice and used in migration and gel contraction assays in the absence and presence of the nonspecific matrix metalloproteinase (MMP) inhibitor BB94. MMP-2 and MMP-9 messenger RNA (mRNA) expression was measured by quantitative reverse transcription-polymerase chain reaction in p27(-/-) and wt VSMCs. RESULTS: p27(-/-) mice reperfused more effectively than wt mice by laser Doppler starting from day 7 (ischemic/nonischemic ratio, 0.33 ± 0.02 vs 0.25 ± 0.02; P < .05) and continuing through day 28 (0.45 ± 0.04 vs 0.31 ± 0.04; P < .05). The gracilis collateral diameter was similar for the nonischemic hindlimbs of the p27(-/-) and wt mice, and this collateral pathway increased similarly after ischemia as assessed by microcomputed tomography. However, the p27(-/-) mice significantly enlarged a novel collateral pathway that bridged directly between the femoral artery proximal to the ligation site and the saphenous or popliteal artery distal to the ligation site more than wt mice (158 ± 18.3 vs 82 ± 22 µm; P < .001). p27(-/-) VSMCs migrated more (79% ± 5% vs 56% ± 6%; P < .05) and caused more gel contraction (18% ± 5% of the initial area vs 43% ± 4%; P < .05) than wt cells. Migration and collagen contraction were abolished in p27(-/-) and wt cells by MMP inhibition. p27(-/-) cells expressed significantly more MMP-2 mRNA than wt cells did. CONCLUSIONS: Knockout of p27 enhances arterial collateralization in response to hindlimb ischemia through enlargement of a new collateral pathway. In vitro, knockout of p27 increases collagen gel contraction in addition to stimulating VSMC migration. We speculate that p27 may affect collateralization through its role in regulating MMP-2 expression.


Assuntos
Circulação Colateral , Inibidor de Quinase Dependente de Ciclina p27/deficiência , Isquemia/fisiopatologia , Músculo Esquelético/irrigação sanguínea , Neovascularização Fisiológica , Inibidores da Angiogênese/farmacologia , Animais , Velocidade do Fluxo Sanguíneo , Movimento Celular , Células Cultivadas , Colágeno/metabolismo , Circulação Colateral/efeitos dos fármacos , Inibidor de Quinase Dependente de Ciclina p27/genética , Modelos Animais de Doenças , Feminino , Genótipo , Membro Posterior , Isquemia/genética , Isquemia/metabolismo , Fluxometria por Laser-Doppler , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Inibidores de Metaloproteinases de Matriz/farmacologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Esquelético/metabolismo , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/fisiopatologia , Miócitos de Músculo Liso/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Fenótipo , Fluxo Sanguíneo Regional , Fatores de Tempo , Microtomografia por Raio-X
2.
J Surg Res ; 193(1): 22-7, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25194470

RESUMO

BACKGROUND: Collateral artery development (arteriogenesis) is an important compensatory response to arterial occlusion caused by atherosclerosis. The heparan sulfate proteoglycan syndecan-1 (sdc1) has previously been shown to affect the response to arterial injury but has yet been studied in arteriogenesis. We tested the hypothesis that sdc1 knockout (sdc1(-/-)) mice would revascularize more poorly than wild type (wt) mice, and then used bone marrow transplantation experiments to determine whether sdc1's effect on arteriogenesis was due to its presence in the local tissue environment or in bone marrow derived cells. MATERIALS AND METHODS: Hindlimb ischemia was induced by femoral artery ligation in wt and sdc1(-/-) female mice as well as in wt and sdc1(-/-) female mice transplanted with wt bone marrow or in wt mice transplanted with sdc1(-/-) bone marrow. Blood flow recovery was assessed by laser Doppler perfusion imaging. Arteriogenesis was assessed by measuring the diameter of the dominant collateral pathway after pressure perfusion fixation and intra-aortic contrast injection at 28 d. Immunohistochemistry was used to assess angiogenesis and peri-collateral macrophage infiltration at 7 d, postoperatively. RESULTS: Sdc1(-/-) mice had impaired blood flow recovery in response to hindlimb ischemia. This impaired recovery was not secondary to a defect in capillary angiogenesis nor was it due to decreased peri-collateral macrophage infiltration. Wt bone marrow did not rescue the impaired recovery of sdc1(-/-) mice. CONCLUSIONS: Sdc1 affects arteriogenesis in response to hindlimb ischemia and is required in the local tissue environment for normal arteriogenesis.


Assuntos
Arteriopatias Oclusivas/fisiopatologia , Circulação Colateral/fisiologia , Sindecana-1/genética , Animais , Arteriopatias Oclusivas/genética , Arteriopatias Oclusivas/metabolismo , Transplante de Medula Óssea , Capilares/fisiologia , Microambiente Celular/fisiologia , Circulação Colateral/genética , Feminino , Artéria Femoral/diagnóstico por imagem , Artéria Femoral/fisiologia , Membro Posterior/irrigação sanguínea , Fluxometria por Laser-Doppler , Macrófagos/fisiologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Sindecana-1/metabolismo , Ultrassonografia
3.
J Am Heart Assoc ; 2(3): e000202, 2013 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-23723253

RESUMO

BACKGROUND: With recent advances in therapeutic applications of stem cells, cell engraftment has become a promising therapy for replacing injured myocardium after infarction. The survival and function of injected cells, however, will depend on the efficient vascularization of the new tissue. Here we describe the arteriogenic remodeling of the coronary vessels that supports vascularization of engrafted tissue postmyocardial infarction (post-MI). METHODS AND RESULTS: Following MI, murine hearts were injected with a skeletal myoblast cell line previously shown to develop into large grafts. Microcomputed tomography at 28 days postengraftment revealed the 3-dimensional structure of the newly formed conducting vessels. The grafts elicited both an angiogenic response and arteriogenic remodeling of the coronary arteries to perfuse the graft. The coronaries upstream of the graft also remodeled, showing an increase in branching, and a decrease in vascular density. Histological analysis revealed the presence of capillaries as well as larger vascular lumens within the graft. Some graft vessels were encoated by smooth muscle α-actin positive cells, implying that vascular remodeling occurs at both the conducting arterial and microvascular levels. CONCLUSIONS: Following MI and skeletal myoblast engraftment, the murine coronary vessels exhibit plasticity that enables both arteriogenic remodeling of the preexisting small branches of the coronary arteries and development of large and small smooth muscle encoated vessels within the graft. Understanding the molecular mechanisms underlying these 2 processes suggests mechanisms to enhance the therapeutic vascularization in patients with myocardial ischemia.


Assuntos
Transplante de Células , Vasos Coronários/fisiologia , Mioblastos Esqueléticos , Infarto do Miocárdio/cirurgia , Animais , Masculino , Camundongos , Revascularização Miocárdica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...