Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Mater ; 22(10): 1165-1166, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37758972
2.
Phys Chem Chem Phys ; 25(4): 2671-2705, 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36637007

RESUMO

Nanocomposite materials consist of nanometer-sized quantum objects such as atoms, molecules, voids or nanoparticles embedded in a host material. These quantum objects can be exploited as a super-structure, which can be designed to create material properties targeted for specific applications. For electromagnetism, such targeted properties include field enhancements around the bandgap of a semiconductor used for solar cells, directional decay in topological insulators, high kinetic inductance in superconducting circuits, and many more. Despite very different application areas, all of these properties are united by the common aim of exploiting collective interaction effects between quantum objects. The literature on the topic spreads over very many different disciplines and scientific communities. In this review, we present a cross-disciplinary overview of different approaches for the creation, analysis and theoretical description of nanocomposites with applications related to electromagnetic properties.

3.
Nanoscale ; 14(43): 16295-16302, 2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36301155

RESUMO

Stackings in graphene have a pivotal role in properties that could be useful in the future, as seen in the recently found superconductivity of twisted bilayer graphene. Beyond bilayer graphene, the stacking order of multilayer graphene can be rhombohedral, which shows flat bands near the Fermi level that are associated with interesting phenomena, such as tunable conducting surface states that can be expected to exhibit spontaneous quantum Hall effect, surface superconductivity, and even topological order. However, the difficulty in exploring rhombohedral graphenes is that in experiments, the alternating, hexagonal stacking is the most commonly found geometry and has been considered to be the most stable configuration for many years. Here we reexamine this stability issue in line with current ongoing studies in various laboratories. We conducted a detailed investigation of the relative stability of trilayer graphene stackings and showed how delicate this aspect is. These few-layer graphenes appear to have two basic stackings with similar energies. The rhombohedral and Bernal stackings are selected using not only compressions but anisotropic in-plane distortions. Furthermore, switching between stable stackings is more clearly induced by deformations such as shear and breaking of the symmetries between graphene sublattices, which can be accessed during selective synthesis approaches. We seek a guide on how to better control - by preserving and changing - the stackings in multilayer graphene samples.

4.
Sci Rep ; 8(1): 14868, 2018 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-30291288

RESUMO

Semiconducting organic films that are at the heart of light-emitting diodes, solar cells and transistors frequently contain a large number of morphological defects, most prominently at the interconnects between crystalline regions. These grain boundaries can dominate the overall (opto-)electronic properties of the entire device and their exact morphological and energetic nature is still under current debate. Here, we explore in detail the energetics at the grain boundaries of a novel electron conductive perylene diimide thin film. Via a combination of temperature dependent charge transport measurements and ab-initio simulations at atomistic resolution, we identify that energetic barriers at grain boundaries dominate charge transport in our system. This novel aspect of physics at the grain boundary is distinct from previously identified grain-boundary defects that had been explained by trapping of charges. We furthermore derive molecular design criteria to suppress such energetic barriers at grain boundaries in future, more efficient organic semiconductors.

5.
Nano Lett ; 18(1): 9-14, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-28980819

RESUMO

The functionality of common organic semiconductor materials is determined by their chemical structure and crystal modification. While the former can be fine-tuned via synthesis, a priori control over the crystal structure has remained elusive. We show that the surface tension is the main driver for the plate-like crystallization of a novel small organic molecule n-type semiconductor at the liquid-air interface. This interface provides an ideal environment for the growth of millimeter-sized semiconductor platelets that are only few nanometers thick and thus highly attractive for application in transistors. On the basis of the novel high-performance perylene diimide, we show in as-grown, only 3 nm thin crystals electron mobilities of above 4 cm2/(V s) and excellent bias stress stability. We suggest that the established systematics on solvent parameters can provide the basis of a general framework for a more deterministic crystallization of other small molecules.

6.
Science ; 330(6005): 812-6, 2010 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-20947726

RESUMO

The single-particle energy spectra of graphene and its bilayer counterpart exhibit multiple degeneracies that arise through inherent symmetries. Interactions among charge carriers should spontaneously break these symmetries and lead to ordered states that exhibit energy gaps. In the quantum Hall regime, these states are predicted to be ferromagnetic in nature, whereby the system becomes spin polarized, layer polarized, or both. The parabolic dispersion of bilayer graphene makes it susceptible to interaction-induced symmetry breaking even at zero magnetic field. We investigated the underlying order of the various broken-symmetry states in bilayer graphene suspended between top and bottom gate electrodes. We deduced the order parameter of the various quantum Hall ferromagnetic states by controllably breaking the spin and sublattice symmetries. At small carrier density, we identified three distinct broken-symmetry states, one of which is consistent with either spontaneously broken time-reversal symmetry or spontaneously broken rotational symmetry.

7.
Phys Rev Lett ; 105(25): 256806, 2010 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-21231612

RESUMO

Bilayer graphene has attracted considerable interest due to the important role played by many-body effects, particularly at low energies. Here we report local compressibility measurements of a suspended graphene bilayer. We find that the energy gaps at filling factors ν= ± 4 do not vanish at low fields, but instead merge into an incompressible region near the charge neutrality point at zero electric and magnetic field. These results indicate the existence of a zero-field ordered state and are consistent with the formation of either an anomalous quantum Hall state or a nematic phase with broken rotational symmetry. At higher fields, we measure the intrinsic energy gaps of broken-symmetry states at ν=0, ± 1, and ± 2, and find that they scale linearly with magnetic field, yet another manifestation of the strong Coulomb interactions in bilayer graphene.

8.
Nano Lett ; 8(4): 1187-91, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18307320

RESUMO

We report on the unexpected finding of nanoscale fibers with a diameter down to 25 nm that emerge from a polymer solution during a standard spin-coating process. The fiber formation relies upon the Raleigh-Taylor instability of the spin-coated liquid film that arises due to a competition of the centrifugal force and the Laplace force induced by the surface curvature. This procedure offers an attractive alternative to electrospinning for the efficient, simple, and nozzle-free fabrication of nanoscale fibers from a variety of polymer solutions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...