Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Br J Cancer ; 128(8): 1491-1502, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36759727

RESUMO

BACKGROUND: Chaperon-mediated autophagy (CMA) has taken on a new emphasis in cancer biology. However, the roles of CMA in hypoxic tumours are poorly understood. We investigated the anti-tumour effects of the natural product ManA through the activation of CMA in tumour progression under hypoxia. METHODS: The effect of ManA on CMA activation was assessed in mouse xenograft models and cells. The gene expressions of HIF-1α, HSP90AA1, and transcription factor EB (TFEB) were analysed using The Cancer Genome Atlas (TCGA) datasets to assess the clinical relevance of CMA. RESULTS: ManA activates photoswitchable CMA reporter activity and inhibits Hsp90 chaperone function by disrupting the Hsp90/F1F0-ATP synthase complex. Hsp90 inhibition enhances the interaction between CMA substrates and LAMP-2A and TFEB nuclear localisation, suggesting CMA activation by ManA. ManA-activated CMA retards tumour growth and displays cooperative anti-tumour activity with anti-PD-1 antibody. TCGA datasets show that a combined expression of HSP90AA1High/HIF1AHigh or TFEBLow/HIF1AHigh is strongly correlated with poor prognosis in patients with lung cancer. CONCLUSIONS: ManA-induced CMA activation by modulating Hsp90 under hypoxia induces HIF-1α degradation and reduces tumour growth. Thus, inducing CMA activity by targeting Hsp90 may be a promising therapeutic strategy against hypoxic tumours.


Assuntos
Autofagia Mediada por Chaperonas , Neoplasias Pulmonares , Camundongos , Animais , Humanos , Hipóxia , Proteínas de Choque Térmico HSP90/metabolismo , Chaperonas Moleculares , Autofagia/genética
2.
Curr Radiopharm ; 10(1): 41-50, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28034351

RESUMO

BACKGROUND: Amino acid transporters, such as LAT1, are overexpressed in aggressive prostate and breast carcinomas, directly influencing pathways of growth and proliferation. OBJECTIVE: The purpose of this study was to synthesize and characterize a novel 18F labeled leucine analog, 5-[18F]fluoroleucine, as a potential imaging agent for aggressive tumors which may not be amenable to imaging by FDG PET. METHODS: 5-fluoroleucine was synthesized and characterized, and its 18F-labeled analog was synthesized from a mesylate precursor. First, breast cancer cell line assays were performed to evaluate uptake of 3H- or 14C-labeled L-leucine and other essential amino acids. Both L-leucine and 5- [18F]fluoroleucine were tested for uptake and accumulation over time, and for uptake via LAT1. Biodistribution studies were performed to estimate radiation dosimetry for human studies. Small animal PET / CT studies of a breast cancer were performed to evaluate in vivo 5-[18F]fluoroleucine tumor uptake. RESULTS: Breast cancer cell lines showed increasing high net accumulation of L-[14C]leucine. Both L-leucine and 5-[18F]fluoroleucine showed increasing uptake over time in in vitro tumor cell assays, and uptake was also shown to occur via LAT1. The biodistribution study of 5-[18F]fluoroleucine showed rapid renal excretion, no significant in vivo metabolism, and acceptable dosimetry for use in humans. In vivo small animal PET / CT imaging of a breast cancer xenograft showed uptake of 5- [18F]fluoroleucine in the tumor, which progressively increased over time. CONCLUSION: 5-[18F]fluoroleucine is a leucine analog which may be useful in identifying tumors with high or upregulated expression of amino acid transporters, providing additional information that may not be provided by FDG PET.


Assuntos
Neoplasias da Mama/radioterapia , Radioisótopos de Flúor/química , Radioisótopos de Flúor/farmacologia , Leucina/análogos & derivados , Leucina/química , Compostos Radiofarmacêuticos/síntese química , Compostos Radiofarmacêuticos/farmacologia , Animais , Neoplasias da Mama/diagnóstico por imagem , Linhagem Celular Tumoral , Humanos , Processamento de Imagem Assistida por Computador , Camundongos , Camundongos Endogâmicos BALB C , Estrutura Molecular , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Radiometria , Sensibilidade e Especificidade , Distribuição Tecidual
3.
J Proteome Res ; 15(8): 2688-96, 2016 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-27322910

RESUMO

Manassantin A is a natural product that has been shown to have anticancer activity in cell-based assays, but has a largely unknown mode-of-action. Described here is the use of two different energetics-based approaches to identify protein targets of manassantin A. Using the stability of proteins from rates of oxidation technique with an isobaric mass tagging strategy (iTRAQ-SPROX) and the pulse proteolysis technique with a stable isotope labeling with amino acids in cell culture strategy (SILAC-PP), over 1000 proteins in a MDA-MB-231 cell lysate grown under hypoxic conditions were assayed for manassantin A interactions (both direct and indirect). A total of 28 protein hits were identified with manassantin A-induced thermodynamic stability changes. Two of the protein hits (filamin A and elongation factor 1α) were identified using both experimental approaches. The remaining 26 hit proteins were only assayed in either the iTRAQ-SPROX or the SILAC-PP experiment. The 28 potential protein targets of manassantin A identified here provide new experimental avenues along which to explore the molecular basis of manassantin A's mode of action. The current work also represents the first application iTRAQ-SPROX and SILAC-PP to the large-scale analysis of protein-ligand binding interactions involving a potential anticancer drug with an unknown mode-of-action.


Assuntos
Lignanas/metabolismo , Dobramento de Proteína , Estabilidade Proteica , Antineoplásicos/metabolismo , Produtos Biológicos , Células Cultivadas , Filaminas/metabolismo , Humanos , Marcação por Isótopo , Ligantes , Oxirredução , Fator 1 de Elongação de Peptídeos/metabolismo , Ligação Proteica , Saururaceae/química
4.
Environ Mol Mutagen ; 57(5): 372-81, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27224425

RESUMO

Combinations of radiotherapy (RT) and chemotherapy have shown efficacy toward brain tumors. However, therapy-induced oxidative stress can damage normal brain tissue, resulting in both progressive neurocognitive loss and diminished quality of life. We have recently shown that MnTnBuOE-2-PyP(5+) (Mn(III)meso-tetrakis(N-n-butoxyethylpyridinium -2-yl)porphyrin) rescued RT-induced white matter damage in cranially-irradiated mice. Radiotherapy is not used in isolation for treatment of brain tumors; temozolomide is the standard-of-care for adult glioblastoma, whereas cisplatin is often used for treatment of pediatric brain tumors. Therefore, we evaluated the brain radiation mitigation ability of MnTnBuOE-2-PyP(5+) after either temozolomide or cisplatin was used singly or in combination with 10 Gy RT. MnTnBuOE-2-PyP(5+) accumulated in brains at low nanomolar levels. Histological and neurobehavioral testing showed a drastic decrease (1) of axon density in the corpus callosum and (2) rotorod and running wheel performance in the RT only treatment group, respectively. MnTnBuOE-2-PyP(5+) completely rescued this phenotype in irradiated animals. In the temozolomide groups, temozolomide/ RT treatment resulted in further decreased rotorod responses over RT alone. Again, MnTnBuOE-2-PyP(5+) treatment rescued the negative effects of both temozolomide ± RT on rotorod performance. While the cisplatin-treated groups did not give similar results as the temozolomide groups, inclusion of MnTnBuOE-2-PyP(5+) did not negatively affect rotorod performance. Additionally, MnTnBuOE-2-PyP(5+) sensitized glioblastomas to either RT ± temozolomide in flank tumor models. Mice treated with both MnTnBuOE-2-PyP(5+) and radio-/chemo-therapy herein demonstrated brain radiation mitigation. MnTnBuOE-2-PyP(5+) may well serve as a normal tissue radio-/chemo-mitigator adjuvant therapy to standard brain cancer treatment regimens. Environ. Mol. Mutagen. 57:372-381, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Comportamento Animal/efeitos dos fármacos , Neoplasias Encefálicas/radioterapia , Encéfalo/efeitos da radiação , Metaloporfirinas/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/efeitos adversos , Antineoplásicos/uso terapêutico , Comportamento Animal/efeitos da radiação , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Linhagem Celular Tumoral , Cisplatino/administração & dosagem , Cisplatino/efeitos adversos , Cisplatino/uso terapêutico , Terapia Combinada , Irradiação Craniana , Dacarbazina/administração & dosagem , Dacarbazina/efeitos adversos , Dacarbazina/análogos & derivados , Dacarbazina/uso terapêutico , Feminino , Humanos , Metaloporfirinas/administração & dosagem , Metaloporfirinas/farmacologia , Camundongos Endogâmicos C57BL , Camundongos Nus , Atividade Motora/efeitos dos fármacos , Atividade Motora/efeitos da radiação , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/farmacologia , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/efeitos da radiação , Temozolomida , Terapia por Raios X/efeitos adversos
5.
J Med Chem ; 58(19): 7659-71, 2015 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-26394152

RESUMO

To cope with hypoxia, tumor cells have developed a number of adaptive mechanisms mediated by hypoxia-inducible factor 1 (HIF-1) to promote angiogenesis and cell survival. Due to significant roles of HIF-1 in the initiation, progression, metastasis, and resistance to treatment of most solid tumors, a considerable amount of effort has been made to identify HIF-1 inhibitors for treatment of cancer. Isolated from Saururus cernuus, manassantins A (1) and B (2) are potent inhibitors of HIF-1 activity. To define the structural requirements of manassantins for HIF-1 inhibition, we prepared and evaluated a series of manassantin analogues. Our SAR studies examined key regions of manassantin's structure in order to understand the impact of these regions on biological activity and to define modifications that can lead to improved performance and drug-like properties. Our efforts identified several manassantin analogues with reduced structural complexity as potential lead compounds for further development. Analogues MA04, MA07, and MA11 down-regulated hypoxia-induced expression of the HIF-1α protein and reduced the levels of HIF-1 target genes, including cyclin-dependent kinase 6 (Cdk6) and vascular endothelial growth factor (VEGF). These findings provide an important framework to design potent and selective HIF-1α inhibitors, which is necessary to aid translation of manassantin-derived natural products to the clinic as novel therapeutics for cancers.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Lignanas/química , Lignanas/farmacologia , Técnicas de Química Sintética , Reagentes de Ligações Cruzadas/síntese química , Reagentes de Ligações Cruzadas/química , Avaliação Pré-Clínica de Medicamentos/métodos , Regulação da Expressão Gênica/efeitos dos fármacos , Células HEK293/efeitos dos fármacos , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Concentração Inibidora 50 , Lignanas/síntese química , Estrutura Molecular
6.
J Nucl Med ; 56(11): 1793-9, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26315828

RESUMO

UNLABELLED: Intraarterial microdosing (IAM) is a novel drug development approach combining intraarterial drug delivery and microdosing. We aimed to demonstrate that IAM leads to target exposure similar to that of systemic full-dose administration but with minimal systemic exposure. IAM could enable the safe, inexpensive, and early study of novel drugs at the first-in-human stage and the study of established drugs in vulnerable populations. METHODS: Insulin was administered intraarterially (ipsilateral femoral artery) or systemically to 8 CD IGS rats just before blood sampling or 60-min (18)F-FDG uptake PET imaging of ipsilateral and contralateral leg muscles (lateral gastrocnemius) and systemic muscles (spinotrapezius). The (18)F-FDG uptake slope analysis was used to compare the interventions. Plasma levels of insulin and glucose were compared using area under the curve calculated by the linear trapezoidal method. A physiologically based computational pharmacokinetics/pharmacodynamics model was constructed to simulate the relationship between the administered dose and response over time. RESULTS: (18)F-FDG slope analysis found no difference between IAM and systemic full-dose slopes (0.0066 and 0.0061, respectively; 95% confidence interval [CI], -0.024 to 0.029; P = 0.7895), but IAM slope was statistically significantly greater than systemic microdose (0.0018; 95% CI, -0.045 to -0.007; P = 0.0147) and sham intervention (-0.0015; 95% CI, 0.023-0.058; P = 0.0052). The pharmacokinetics/pharmacodynamics data were used to identify model parameters that describe membrane insulin binding and glucose-insulin dynamics. CONCLUSION: Target exposure after IAM was similar to systemic full dose administration but with minimal systemic effects. The computational pharmacokinetics/pharmacodynamics model can be generalized to predict whole-body response. Findings should be validated in larger, controlled studies in animals and humans using a range of targets and classes of drugs.


Assuntos
Fluordesoxiglucose F18/administração & dosagem , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/administração & dosagem , Algoritmos , Animais , Glicemia/metabolismo , Simulação por Computador , Sistemas de Liberação de Medicamentos , Fluordesoxiglucose F18/efeitos adversos , Fluordesoxiglucose F18/farmacocinética , Hipoglicemiantes/farmacologia , Interpretação de Imagem Assistida por Computador , Injeções Intra-Arteriais , Insulina/sangue , Insulina/farmacologia , Masculino , Modelos Estatísticos , Compostos Radiofarmacêuticos/efeitos adversos , Compostos Radiofarmacêuticos/farmacocinética , Ratos
7.
Macromolecules ; 48(9): 2967-2977, 2015 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-26056421

RESUMO

Dual emissive luminescence properties of solid-state difluoroboron ß-diketonate-poly(lactic acid) (BF2bdk-PLA) materials have been utilized as biological oxygen sensors. Dyes with red-shifted absorption and emission are important for multiplexing and in vivo imaging, thus hydroxyl-functionalized dinaphthoylmethane initiators and dye-PLA conjugates BF2dnm(X)PLA (X = H, Br, I) with extended conjugation were synthesized. The luminescent materials show red-shifted absorbance (~435 nm) and fluorescence tunability by molecular weight. Fluorescence colors range from yellow (~530 nm) in 10 - 12 kDa polymers to green (~490 nm) in 20 - 30 kDa polymers. Room-temperature phosphorescence (RTP) and thermally activated delayed fluorescence (TADF) are present under a nitrogen atmosphere. For the iodine-substituted derivative, BF2dnm(I)PLA, clearly distinguishable fluorescence (green) and phosphorescence (orange) peaks are present, making it ideal for ratiometric oxygen-sensing and imaging. Bromide and hydrogen analogues with weaker relative phosphorescence intensities and longer phosphorescence lifetimes can be used as highly sensitive, concentration independent, lifetime-based oxygen sensors or for gated emission detection. BF2dnm(I)PLA nanoparticles were taken up by T41 mouse mammary cells and successfully demonstrated differences in vitro ratiometric measurement of oxygen.

8.
J Biol Chem ; 290(29): 17985-17998, 2015 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-26048986

RESUMO

Pregnancy promotes physiological adaptations throughout the body, mediated by the female sex hormones progesterone and estrogen. Changes in the metabolic properties of skeletal muscle enable the female body to cope with the physiological challenges of pregnancy and may also be linked to the development of insulin resistance. We conducted global microarray, proteomic, and metabolic analyses to study the role of the progesterone receptor and its transcriptional regulator, smoothelin-like protein 1 (SMTNL1) in the adaptation of skeletal muscle to pregnancy. We demonstrate that pregnancy promotes fiber-type changes from an oxidative to glycolytic isoform in skeletal muscle. This phenomenon is regulated through an interaction between SMTNL1 and progesterone receptor, which alters the expression of contractile and metabolic proteins. smtnl1(-/-) mice are metabolically less efficient and show impaired glucose tolerance. Pregnancy antagonizes these effects by inducing metabolic activity and increasing glucose tolerance. Our results suggest that SMTNL1 has a role in mediating the actions of steroid hormones to promote fiber switching in skeletal muscle during pregnancy. Our findings also bear on the management of gestational diabetes that develops as a complication of pregnancy in ~4% of women.


Assuntos
Deleção de Genes , Glicólise , Proteínas Musculares/genética , Músculo Esquelético/metabolismo , Fosfoproteínas/genética , Animais , Receptor alfa de Estrogênio/análise , Receptor alfa de Estrogênio/metabolismo , Feminino , Regulação da Expressão Gênica , Teste de Tolerância a Glucose , Humanos , Resistência à Insulina , Camundongos , Proteínas Musculares/metabolismo , Músculo Esquelético/ultraestrutura , Consumo de Oxigênio , Fosfoproteínas/metabolismo , Gravidez , Proteômica , Receptores de Progesterona/análise , Receptores de Progesterona/metabolismo
9.
Macromol Rapid Commun ; 36(7): 694-9, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25753154

RESUMO

Surface modification of nanoparticles and biosensors is a dynamic, expanding area of research for targeted delivery in vivo. For more efficient delivery, surfaces are PEGylated to impart stealth properties, long circulation, and enable enhanced permeability and retention (EPR) in tumor tissues. Previously, BF2 dbm(I)PLA was proven to be a good oxygen nanosensor material for tumor hypoxia imaging in vivo, though particles were applied directly to the tumor and surrounding region. Further surface modification is needed for this dual-emissive oxygen sensitive material for effective intravenous (IV) administration and passive and active delivery to tumors. In this paper, an efficient synthesis of a new dual-emissive material BF2 dbm(I)PLA-mPEG is presented and in vitro stability studies are conducted. It is found that fabricated nanoparticles are stable for 24 weeks as a suspension, while after 25 weeks the nanoparticles swell and both dye and polymer degradation escalates. Preliminary studies show BF2 dbm(I)PLA-mPEG nanoparticle accumulation in a window chamber mammary tumor 24 h after IV injection into mice (C57Bl/6 strain) enabling tumor oxygen imaging.


Assuntos
Compostos de Boro/química , Diagnóstico por Imagem/instrumentação , Neoplasias/química , Oxigênio/análise , Polietilenoglicóis/química , Animais , Luminescência , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias/diagnóstico , Neoplasias/metabolismo , Oxigênio/metabolismo
10.
Mol Cancer Ther ; 14(1): 70-9, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25319393

RESUMO

Cranial irradiation is a standard therapy for primary and metastatic brain tumors. A major drawback of radiotherapy (RT), however, is long-term cognitive loss that affects quality of life. Radiation-induced oxidative stress in normal brain tissue is thought to contribute to cognitive decline. We evaluated the effectiveness of a novel mimic of superoxide dismutase enzyme (SOD), MnTnBuOE-2-PyP(5+)(Mn(III) meso-tetrakis(N-n-butoxyethylpyridinium-2-yl)porphyrin), to provide long-term neuroprotection following 8 Gy of whole brain irradiation. Long-term RT damage can only be assessed by brain imaging and neurocognitive studies. C57BL/6J mice were treated with MnTnBuOE-2-PyP(5+) before and after RT and evaluated three months later. At this time point, drug concentration in the brain was 25 nmol/L. Mice treated with MnTnBuOE-2-PyP(5+)/RT exhibited MRI evidence for myelin preservation in the corpus callosum compared with saline/RT treatment. Corpus callosum histology demonstrated a significant loss of axons in the saline/RT group that was rescued in the MnTnBuOE-2-PyP(5+)/RT group. In addition, the saline/RT groups exhibited deficits in motor proficiency as assessed by the rotorod test and running wheel tests. These deficits were ameliorated in groups treated with MnTnBuOE-2-PyP(5+)/RT. Our data demonstrate that MnTnBuOE-2-PyP(5+) is neuroprotective for oxidative stress damage caused by radiation exposure. In addition, glioblastoma cells were not protected by MnTnBuOE-2-PyP(5+) combination with radiation in vitro. Likewise, the combination of MnTnBuOE-2-PyP(5+) with radiation inhibited tumor growth more than RT alone in flank tumors. In summary, MnTnBuOE-2-PyP(5+) has dual activity as a neuroprotector and a tumor radiosensitizer. Thus, it is an attractive candidate for adjuvant therapy with RT in future studies with patients with brain cancer.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Metaloporfirinas/administração & dosagem , Atividade Motora/efeitos da radiação , Protetores contra Radiação/administração & dosagem , Substância Branca/efeitos da radiação , Animais , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/radioterapia , Linhagem Celular Tumoral , Corpo Caloso/efeitos da radiação , Glioblastoma/patologia , Glioblastoma/radioterapia , Humanos , Metaloporfirinas/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Protetores contra Radiação/farmacologia , Substância Branca/patologia
11.
ACS Chem Biol ; 8(12): 2715-23, 2013 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-24070067

RESUMO

DAPK1 and ZIPK (also called DAPK3) are closely related serine/threonine protein kinases that regulate programmed cell death and phosphorylation of non-muscle and smooth muscle myosin. We have developed a fluorescence linked enzyme chemoproteomic strategy (FLECS) for the rapid identification of inhibitors for any element of the purinome and identified a selective pyrazolo[3,4-d]pyrimidinone (HS38) that inhibits DAPK1 and ZIPK in an ATP-competitive manner at nanomolar concentrations. In cellular studies, HS38 decreased RLC20 phosphorylation. In ex vivo studies, HS38 decreased contractile force generated in mouse aorta, rabbit ileum, and calyculin A stimulated arterial muscle by decreasing RLC20 and MYPT1 phosphorylation. The inhibitor also promoted relaxation in Ca(2+)-sensitized vessels. A close structural analogue (HS43) with 5-fold lower affinity for ZIPK produced no effect on cells or tissues. These findings are consistent with a mechanism of action wherein HS38 specifically targets ZIPK in smooth muscle. The discovery of HS38 provides a lead scaffold for the development of therapeutic agents for smooth muscle related disorders and a chemical means to probe the function of DAPK1 and ZIPK across species.


Assuntos
Proteínas Quinases Associadas com Morte Celular/antagonistas & inibidores , Proteínas de Fluorescência Verde/metabolismo , Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Pirazóis/farmacologia , Pirimidinonas/farmacologia , Proteínas Recombinantes de Fusão/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Aorta/citologia , Aorta/efeitos dos fármacos , Aorta/enzimologia , Ligação Competitiva , Cálcio/metabolismo , Proteínas Quinases Associadas com Morte Celular/genética , Proteínas Quinases Associadas com Morte Celular/metabolismo , Proteínas de Fluorescência Verde/genética , Células HEK293 , Ensaios de Triagem em Larga Escala , Humanos , Íleo/citologia , Íleo/efeitos dos fármacos , Íleo/enzimologia , Camundongos , Contração Muscular/efeitos dos fármacos , Músculo Liso/citologia , Músculo Liso/enzimologia , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/enzimologia , Quinase de Cadeia Leve de Miosina/antagonistas & inibidores , Quinase de Cadeia Leve de Miosina/metabolismo , Fosfatase de Miosina-de-Cadeia-Leve , Fosforilação , Cultura Primária de Células , Inibidores de Proteínas Quinases/química , Proteômica , Pirazóis/química , Pirimidinonas/química , Coelhos , Proteínas Recombinantes de Fusão/genética
12.
Cancer Res ; 73(20): 6230-42, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23959856

RESUMO

Hypoxia-inducible factor 1 (HIF-1) is a master transcription factor that controls cellular homeostasis. Although its activation benefits normal tissue, HIF-1 activation in tumors is a major risk factor for angiogenesis, therapeutic resistance, and poor prognosis. HIF-1 activity is usually suppressed under normoxic conditions because of rapid oxygen-dependent degradation of HIF-1α. Here, we show that, under normoxic conditions, HIF-1α is upregulated in tumor cells in response to doxorubicin, a chemotherapeutic agent used to treat many cancers. In addition, doxorubicin enhanced VEGF secretion by normoxic tumor cells and stimulated tumor angiogenesis. Doxorubicin-induced accumulation of HIF-1α in normoxic cells was caused by increased expression and activation of STAT1, the activation of which stimulated expression of iNOS and its synthesis of nitric oxide (NO) in tumor cells. Mechanistic investigations established that blocking NO synthesis or STAT1 activation was sufficient to attenuate the HIF-1α accumulation induced by doxorubicin in normoxic cancer cells. To our knowledge, this is the first report that a chemotherapeutic drug can induce HIF-1α accumulation in normoxic cells, an efficacy-limiting activity. Our results argue that HIF-1α-targeting strategies may enhance doxorubicin efficacy. More generally, they suggest a broader perspective on the design of combination chemotherapy approaches with immediate clinical impact.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Doxorrubicina/farmacologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Fatores de Transcrição/genética , Animais , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Feminino , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Células MCF-7 , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/genética , Neoplasias Mamárias Experimentais/metabolismo , Camundongos , Camundongos Nus , Óxido Nítrico/genética , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Distribuição Aleatória , Fator de Transcrição STAT1/deficiência , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/metabolismo , Fatores de Transcrição/metabolismo , Regulação para Cima
13.
J Biol Chem ; 286(36): 31839-51, 2011 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-21771785

RESUMO

During pregnancy, uterine smooth muscle (USM) coordinately adapts its contractile phenotype in order to accommodate the developing fetus and then prepare for delivery. Herein we show that SMTNL1 plays a major role in pregnancy to promote adaptive responses in USM and that this process is specifically mediated through interactions of SMTNL1 with the steroid hormone receptor PR-B. In vitro and in vivo SMTNL1 selectively binds PR and not other steroid hormone receptors. The physiological relationship between the two proteins was also established in global gene expression and transcriptional reporter studies in pregnant smtnl1(-/-) mice and by RNA interference in progesterone-sensitive cell lines. We show that the contraction-associated and progestin-sensitive genes (oxytocin receptor, connexin 43, and cyclooxygenase-2) and prolactins are down-regulated in pregnant smtnl1(-/-) mice. We suggest that SMTNL1 is a bifunctional co-regulator of PR-B signaling and thus provides a molecular mechanism whereby PR-B is targeted to alter gene expression patterns within USM cells to coordinately promote alterations in USM function during pregnancy.


Assuntos
Proteínas Musculares/fisiologia , Fosfoproteínas/fisiologia , Receptores de Progesterona/metabolismo , Animais , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/fisiologia , Camundongos , Contração Muscular/fisiologia , Proteínas Musculares/metabolismo , Músculo Liso/metabolismo , Miométrio/metabolismo , Miométrio/fisiologia , Fosfoproteínas/metabolismo , Gravidez , Progestinas , Prolactina , Transcrição Gênica
14.
Cell Signal ; 23(1): 297-303, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20854903

RESUMO

ZIPK (zipper-interacting protein kinase) is a Ca(2+)-independent protein kinase that promotes myosin phosphorylation in both smooth muscle and non-muscle cells. A recent report attempted to clarify a debate over the subcellular localization of ZIPK in non-muscle cells (Shoval et. al. (2007) Plos Genetics. 3: 1884-1883). A species-specific loss of a key phosphorylation site (T299) in murine (mouse and rat) ZIPK seems to direct it to the nucleus, while the presence of the T299 site in human ZIPK correlates with cytoplasmic localization. T299 is immediately adjacent to a putative nuclear localization sequence (NLS) and may mask its function when phosphorylated, therefore explaining the species-specific dichotomy of intracellular localization. However, despite the murine ZIPK (mZIPK) lacking the T299 residue that is critical for controlling human ZIPK (hZIPK) subcellular localization, mutational analysis showed that this NLS control locus is nonfunctional in the murine context. A constitutively active Rho promoted the cytoplasmic retention of a human ZIPK mutant that would otherwise localize to the nucleus. Endogenous hZIPK showed sensitivity to the nuclear export inhibitor leptomycin B, suggesting a continuous shuttling between cytoplasm and nucleus that is dependent upon T299 dephosphorylation. Thus, the C-terminal domain of human and murine ZIPK demonstrated quite divergent nuclear import and export functionality. We conclude that in the case of ZIPK, studies between the species may not be directly comparable to each other given the gross differences in intracellular localization and movement.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Núcleo Celular/enzimologia , Transporte Ativo do Núcleo Celular , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Proteínas Reguladoras de Apoptose/análise , Proteínas Reguladoras de Apoptose/genética , Proteínas Quinases Dependentes de Cálcio-Calmodulina/análise , Proteínas Quinases Dependentes de Cálcio-Calmodulina/genética , Proteínas Quinases Associadas com Morte Celular , Ácidos Graxos Insaturados/farmacologia , Células HeLa , Humanos , Camundongos , Dados de Sequência Molecular , Mutação , Fosforilação , Especificidade da Espécie , Proteínas rho de Ligação ao GTP/metabolismo
15.
J Biol Chem ; 285(38): 29357-66, 2010 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-20634291

RESUMO

Pregnancy coordinately alters the contractile properties of both vascular and uterine smooth muscles reducing systemic blood pressure and maintaining uterine relaxation. The precise molecular mechanisms underlying these pregnancy-induced adaptations have yet to be fully defined but are likely to involve changes in the expression of proteins regulating myosin phosphorylation. Here we show that smoothelin like protein 1 (SMTNL1) is a key factor governing sexual development and pregnancy induced adaptations in smooth and striated muscle. A primary target gene of SMTNL1 in these muscles is myosin phosphatase-targeting subunit 1 (MYPT1). Deletion of SMTNL1 increases expression of MYPT1 30-40-fold in neonates and during development expression of both SMTNL1 and MYPT1 increases over 20-fold. Pregnancy also regulates SMTNL1 and MYPT1 expression, and deletion SMTNL1 greatly exaggerates expression of MYPT1 in vascular smooth muscle, producing a profound reduction in force development in response to phenylephrine as well as sensitizing the muscle to acetylcholine. We also show that MYPT1 is expressed in Type2a muscle fibers in mice and humans and its expression is regulated during pregnancy, suggesting unrecognized roles in mediating skeletal muscle plasticity in both species. Our findings define a new conserved pathway in which sexual development and pregnancy mediate smooth and striated muscle adaptations through SMTNL1 and MYPT1.


Assuntos
Proteínas Musculares/metabolismo , Músculo Liso/metabolismo , Músculo Estriado/metabolismo , Quinase de Cadeia Leve de Miosina/metabolismo , Fosfoproteínas/metabolismo , Adulto , Animais , Western Blotting , Núcleo Celular/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Imuno-Histoquímica , Técnicas In Vitro , Masculino , Camundongos , Camundongos Mutantes , Microscopia Confocal , Proteínas Musculares/genética , Quinase de Cadeia Leve de Miosina/genética , Fosfatase de Miosina-de-Cadeia-Leve , Fosfoproteínas/genética , Fosforilação , Gravidez , Ligação Proteica/genética , Ligação Proteica/fisiologia , Transporte Proteico/genética , Transporte Proteico/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Útero/metabolismo
16.
J Biol Chem ; 282(7): 4884-4893, 2007 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-17158456

RESUMO

Zipper-interacting protein kinase (ZIPK) regulates Ca(2+)-independent phosphorylation of both smooth muscle (to regulate contraction) and non-muscle myosin (to regulate non-apoptotic cell death) through either phosphorylation and inhibition of myosin phosphatase, the myosin phosphatase inhibitor CPI17, or direct phosphorylation of myosin light chain. ZIPK is regulated by multisite phosphorylation. Phosphorylation at least three sites Thr-180, Thr-225, and Thr-265 has been shown to be essential for full activity, whereas phosphorylation at Thr-299 regulates its intracellular localization. Herein we utilized an unbiased proteomics screen of smooth muscle extracts with synthetic peptides derived from the sequence of the regulatory phosphorylation sites of the enzyme to identify the protein kinases that might regulate ZIPK activity in vivo. Discrete kinase activities toward Thr-265 and Thr-299 were defined and identified by mass spectrometry as Rho kinase 1 (ROCK1). In vitro, ROCK1 showed a high degree of substrate specificity toward native ZIPK, both stoichiometrically phosphorylating the enzyme at Thr-265 and Thr-299 as well as bringing about activation. In HeLa cells, coexpression of ZIPK with ROCK1 altered the ROCK-induced phenotype of focused stress fiber pattern to a Rho-like phenotype of parallel stress fiber pattern. This effect was also dependent upon phosphorylation at Thr-265. Our findings provide a new regulatory pathway in smooth muscle and non-muscle cells whereby ROCK1 phosphorylates and regulates ZIP kinase.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Músculo Liso/enzimologia , Processamento de Proteína Pós-Traducional/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/fisiologia , Animais , Proteínas Reguladoras de Apoptose , Proteínas Quinases Dependentes de Cálcio-Calmodulina , Morte Celular/fisiologia , Proteínas Quinases Associadas com Morte Celular , Ativação Enzimática/fisiologia , Masculino , Quinase de Cadeia Leve de Miosina/metabolismo , Fosfatase de Miosina-de-Cadeia-Leve/metabolismo , Miosinas/metabolismo , Peptídeos/farmacologia , Fosforilação , Proteômica , Fibras de Estresse/metabolismo , Suínos , Quinases Associadas a rho
17.
Mol Biol Cell ; 17(4): 1779-89, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16467385

RESUMO

The Cdc25 phosphatase promotes entry into mitosis through the removal of inhibitory phosphorylations on the Cdc2 subunit of the Cdc2/CyclinB complex. During interphase, or after DNA damage, Cdc25 is suppressed by phosphorylation at Ser287 (Xenopus numbering; Ser216 of human Cdc25C) and subsequent binding of the small acidic protein, 14-3-3. As reported recently, at the time of mitotic entry, 14-3-3 protein is removed from Cdc25 and S287 is dephosphorylated by protein phosphatase 1 (PP1). After the initial activation of Cdc25 and consequent derepression of Cdc2/CyclinB, Cdc25 is further activated through a Cdc2-catalyzed positive feedback loop. Although the existence of such a loop has been appreciated for some time, the molecular mechanism for this activation has not been described. We report here that phosphorylation of S285 by Cdc2 greatly enhances recruitment of PP1 to Cdc25, thereby accelerating S287 dephosphorylation and mitotic entry. Moreover, we show that two other previously reported sites of Cdc2-catalyzed phosphorylation on Cdc25 are required for maximal biological activity of Cdc25, but they do not contribute to PP1 regulation and do not act solely through controlling S287 phosphorylation. Therefore, multiple mechanisms, including enhanced recruitment of PP1, are used to promote full activation of Cdc25 at the time of mitotic entry.


Assuntos
Proteína Quinase CDC2/metabolismo , Ciclina B/metabolismo , Retroalimentação Fisiológica , Mitose , Fosfoproteínas Fosfatases/fisiologia , Serina/metabolismo , Fosfatases cdc25/metabolismo , Proteínas 14-3-3/metabolismo , Animais , Ativação Enzimática , Mutação , Fosforilação , Proteína Fosfatase 1 , Serina/genética , Treonina/metabolismo , Xenopus , Fosfatases cdc25/química , Fosfatases cdc25/genética
18.
Nat Struct Mol Biol ; 13(2): 103-11, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16429152

RESUMO

During apoptosis and under conditions of cellular stress, several signaling pathways promote inhibition of cap-dependent translation while allowing continued translation of specific messenger RNAs encoding regulatory and stress-response proteins. We report here that the apoptotic regulator Reaper inhibits protein synthesis by binding directly to the 40S ribosomal subunit. This interaction does not affect either ribosomal association of initiation factors or formation of 43S or 48S complexes. Rather, it interferes with late initiation events upstream of 60S subunit joining, apparently modulating start-codon recognition during scanning. CrPV IRES-driven translation, involving direct ribosomal recruitment to the start site, is relatively insensitive to Reaper. Thus, Reaper is the first known cellular ribosomal binding factor with the potential to allow selective translation of mRNAs initiating at alternative start codons or from certain IRES elements. This function of Reaper may modulate gene expression programs to affect cell fate.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Biossíntese de Proteínas , Ribossomos/metabolismo , Animais , Transporte Biológico , Códon de Iniciação/genética , Reparo do DNA , Proteínas de Drosophila/genética , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Fosforilação , Ligação Proteica , RNA Mensageiro/genética , Coelhos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...