Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 1336, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378701

RESUMO

The 79 North Glacier (79NG) features Greenland's largest floating ice tongue. Even though its extent has not changed significantly in recent years, observations have indicated a major thinning of the ice tongue from below. Both ocean warming and an increase in subglacial discharge from the ice sheet induced by atmospheric warming could increase the basal melt; however, available observations alone cannot tell which of these is the main driver. Here, we employ a global simulation which explicitly resolves the ocean circulation in the cavity with 700 m resolution to disentangle the impact of the ocean and atmosphere. We find that the interannual variability of basal melt below 79NG over the past 50 years is mainly associated with changes in the temperature of the Atlantic Intermediate Water inflow, which can be traced back across the Northeast Greenland continental shelf to the eastern Fram Strait with a lag of 3 years.

2.
Nat Commun ; 12(1): 7309, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34911949

RESUMO

The ocean moderates the world's climate through absorption of heat and carbon, but how much carbon the ocean will continue to absorb remains unknown. The North Atlantic Ocean west (Baffin Bay/Labrador Sea) and east (Fram Strait/Greenland Sea) of Greenland features the most intense absorption of anthropogenic carbon globally; the biological carbon pump (BCP) contributes substantially. As Arctic sea-ice melts, the BCP changes, impacting global climate and other critical ocean attributes (e.g. biodiversity). Full understanding requires year-round observations across a range of ice conditions. Here we present such observations: autonomously collected Eulerian continuous 24-month time-series in Fram Strait. We show that, compared to ice-unaffected conditions, sea-ice derived meltwater stratification slows the BCP by 4 months, a shift from an export to a retention system, with measurable impacts on benthic communities. This has implications for ecosystem dynamics in the future warmer Arctic where the seasonal ice zone is expected to expand.


Assuntos
Carbono/análise , Camada de Gelo/química , Água do Mar/química , Oceano Atlântico , Ciclo do Carbono , Mudança Climática , Ecossistema , Groenlândia , Terra Nova e Labrador
3.
Commun Biol ; 4(1): 1255, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34732822

RESUMO

Arctic Ocean sea ice cover is shrinking due to warming. Long-term sediment trap data shows higher export efficiency of particulate organic carbon in regions with seasonal sea ice compared to regions without sea ice. To investigate this sea-ice enhanced export, we compared how different early summer phytoplankton communities in seasonally ice-free and ice-covered regions of the Fram Strait affect carbon export and vertical dispersal of microbes. In situ collected aggregates revealed two-fold higher carbon export of diatom-rich aggregates in ice-covered regions, compared to Phaeocystis aggregates in the ice-free region. Using microbial source tracking, we found that ice-covered regions were also associated with more surface-born microbial clades exported to the deep sea. Taken together, our results showed that ice-covered regions are responsible for high export efficiency and provide strong vertical microbial connectivity. Therefore, continuous sea-ice loss may decrease the vertical export efficiency, and thus the pelagic-benthic coupling, with potential repercussions for Arctic deep-sea ecosystems.


Assuntos
Ciclo do Carbono , Camada de Gelo/química , Camada de Gelo/microbiologia , Microbiota/fisiologia , Archaea/metabolismo , Regiões Árticas , Bactérias/metabolismo , Oceanos e Mares
4.
Environ Sci Technol ; 54(7): 4079-4090, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32142614

RESUMO

Recent studies have shown that despite its remoteness, the Arctic region harbors some of the highest microplastic (MP) concentrations worldwide. Here, we present the results of a sampling campaign to assess the vertical distribution of MP particles (>11 µm) at five stations of the HAUSGARTEN observatory. Water column samples were taken with large volume pumps by filtering 218-561 L of seawater at two to four depth strata (near-surface, ∼300 m, ∼1000 m, and above seafloor), and sediment samples were taken with a multiple corer. MP concentrations in the water column ranged between 0 and 1287 N m-3 and in the sediment from 239 to 13 331 N kg-1. Fourier transform infrared spectroscopy (FTIR) imaging with automated data analysis showed that polyamide (39%) and ethylene-propylene-diene rubber (23%) were the most abundant polymers within the water samples and polyethylene-chlorinated (31%) in sediments. MPs ≤ 25 µm accounted for more than half of the synthetic particles in every sample. The largest MP particle recorded was in the 200 µm size class. The concentrations of fibers were not reported, as fiber detection by FTIR imaging was not available at the time of analyses. Two- and three-dimensional simulations of particle transport trajectories suggest different pathways for certain polymer types. A positive correlation between MP size composition and particulate organic carbon indicates interactions with biological processes in the water column.


Assuntos
Plásticos , Poluentes Químicos da Água , Regiões Árticas , Monitoramento Ambiental , Sedimentos Geológicos , Microplásticos , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...