Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Sci (China) ; 65: 162-170, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29548387

RESUMO

This study assessed the effectiveness of three novel control technologies for particulate matter (PM) and volatile organic compound (VOC) removal from commercial meat cooking operations. All experiments were conducted using standardized procedures at University of California, Riverside's commercial test cooking facility. PM mass emissions collected using South Coast Air Quality Management District (SCAQMD) Method 5.1, as well as a dilution tunnel-based PM method showed statistically significantly reductions for each control technology when compared to baseline testing (i.e., without a catalyst). Overall, particle number emissions decreased with the use of control technologies, with the exception of control technology 2 (CT2), which is a grease removal technology based on boundary layer momentum transfer (BLMT) theory. Particle size distributions were unimodal with CT2 resulting in higher particle number populations at lower particle diameters. Organic carbon was the dominant PM component (>99%) for all experiments. Formaldehyde and acetaldehyde were the most abundant carbonyl compounds and showed reductions with the application of the control technologies. Some reductions in mono-aromatic VOCs were also observed with CT2 and the electrostatic precipitator (ESP) CT3 compared to the baseline testing.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental , Indústria Alimentícia , Carne , Material Particulado/análise
2.
Environ Sci Technol ; 51(3): 1868-1875, 2017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-28050905

RESUMO

Ocean going vessels (OGVs) operating within emission control areas (ECA) are required to use fuels with ≤0.1 wt % sulfur. Up to now only distillate fuels could meet the sulfur limits. Recently refiners created a novel low-sulfur heavy-fuel oil (LSHFO) meeting the sulfur limits so questions were posed whether nitric oxide (NOx) and particulate matter (PM) emissions were the same for the two fuels. This project characterized criteria pollutants and undertook a detailed analysis of PM emissions from a very large crude oil carrier (VLCC) using a distillate ECA fuel (MGO) and novel LSHFO. Results showed emission factors of NOx were ∼5% higher with MGO than LSHFO. PM2.5 emission factors were ∼3 times higher with LSHFO than MGO, while both were below values reported by Lloyds, U.S. EPA and CARB. A detailed analysis of PM revealed it was >90% organic carbon (OC) for both fuels. Elemental carbon (EC) and soot measured with an AVL microsoot sensor (MSS) reflected black carbon. PM size distributions showed unimodal peaks for both MGO (20-30 nm) and LSHFO (30-50 nm). Particle number (PN) emissions were 28% and 17% higher with the PPS-M compared to the SMPS for LSHFO and MGO, respectively.


Assuntos
Poluentes Atmosféricos , Óleos Combustíveis , Poluição do Ar , Tamanho da Partícula , Material Particulado , Fuligem , Emissões de Veículos
3.
J Air Waste Manag Assoc ; 63(3): 284-91, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23556238

RESUMO

UNLABELLED: Regulatory agencies have shifted their emphasis from measuring emissions during certification cycles to measuring emissions during actual use. Emission measurements in this research were made from two different large ships at sea to compare the Simplified Measurement Method (SMM) compliant with the International Maritime Organization (IMO) NOx Technical Code to the Portable Emission Measurement Systems (PEMS) compliant with the US. Environmental Protection Agency (EPA) 40 Code of Federal Regulations (CFR) Part 1065 for on-road emission testing. Emissions of nitrogen oxides (NOx), carbon dioxide (CO2), and carbon monoxide (CO) were measured at load points specified by the International Organization for Standardization (ISO) to compare the two measurement methods. The average percentage errors calculated for PEMS measurements were 6.5%, 0.6%, and 357% for NOx, CO2, and CO, respectively. The NOx percentage error of 6.5% corresponds to a 0.22 to 1.11 g/kW-hr error in moving from Tier III (3.4 g/kW-hr) to Tier I (17.0 g/kW-hr) emission limits. Emission factors (EFs) of NOx and CO2 measured via SMM were comparable to other studies and regulatory agencies estimates. However EF(PM2.5) for this study was up to 26% higher than that currently used by regulatory agencies. The PM2.5 was comprised predominantly of hydrated sulfate (70-95%), followed by organic carbon (11-14%), ash (6-11%), and elemental carbon (0.4-0.8%). IMPLICATIONS: This research provides direct comparison between the International Maritime Organization and U.S. Environmental Protection Agency reference methods for quantifying in-use emissions from ships. This research provides correlations for NOx, CO2, and CO measured by a PEMS unit (certified by U.S. EPA for on-road testing) against IMO's Simplified Measurement Method for on-board certification. It substantiates the measurements of NOx by PEMS and quantifies measurement error. This study also provides in-use modal and overall weighted emission factors of gaseous (NOx, CO, CO2, total hydrocarbons [THC], and SO2) and particulate pollutants from the main engine of a container ship, which are helpful in the development of emission inventory.


Assuntos
Gases/análise , Navios , Emissões de Veículos/análise , Algoritmos , Material Particulado/análise , Estados Unidos
4.
Environ Sci Technol ; 46(22): 12600-7, 2012 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-22974075

RESUMO

Reducing emissions from ocean-going vessels (OGVs) as they sail near populated areas is a widely recognized goal, and Vessel Speed Reduction (VSR) is one of several strategies that is being adopted by regulators and port authorities. The goal of this research was to measure the emission benefits associated with greenhouse gas and criteria pollutants by operating OGVs at reduced speed. Emissions were measured from one Panamax and one post-Panamax class container vessels as their vessel speed was reduced from cruise to 15 knots or below. VSR to 12 knots yielded carbon dioxide (CO(2)) and nitrogen oxides (NO(x)) emissions reductions (in kg/nautical mile (kg/nmi)) of approximately 61% and 56%, respectively, as compared to vessel cruise speed. The mass emission rate (kg/nmi) of PM(2.5) was reduced by 69% with VSR to 12 knots alone and by ~97% when coupled with the use of the marine gas oil (MGO) with 0.00065% sulfur content. Emissions data from vessels while operating at sea are scarce and measurements from this research demonstrated that tidal current is a significant parameter affecting emission factors (EFs) at lower engine loads. Emissions factors at ≤20% loads calculated by methodology adopted by regulatory agencies were found to underestimate PM(2.5) and NO(x) by 72% and 51%, respectively, when compared to EFs measured in this study. Total pollutant emitted (TPE) in the emission control area (ECA) was calculated, and emission benefits were estimated as the VSR zone increased from 24 to 200 nmi. TPE(CO2) and TPE(PM2.5) estimated for large container vessels showed benefits for CO(2) (2-26%) and PM(2.5) (4-57%) on reducing speeds from 15 to 12 knots, whereas TPE(CO2) and TPE(PM2.5) for small and medium container vessels were similar at 15 and 12 knots.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/análise , Poluição do Ar/prevenção & controle , Navios , Emissões de Veículos/análise , California , Cromatografia por Troca Iônica , Comércio , Monitoramento Ambiental , Gases/análise , Movimento (Física) , Oceanos e Mares , Material Particulado/análise
5.
Environ Sci Technol ; 46(9): 5049-56, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22468877

RESUMO

Emissions from ocean-going vessels (OGVs) are a significant health concern for people near port communities. This paper reports the emission benefits for two mitigation strategies, cleaner engines and cleaner fuels, for a 2010 container vessel. In-use emissions were measured following International Organization for Standardization (ISO) protocols. The overall in-use nitrogen oxide (NO(x)) emission factor was 16.1 ± 0.1 gkW(-1) h(-1), lower than the Tier 1 certification (17 gkW(-1) h(-1)) and significantly lower than the benchmark value of 18.7 gkW(-1) h(-1) commonly used for estimating emission inventories. The in-use particulate matter (PM(2.5)) emission was 1.42 ± 0.04 gkW(-1) h(-1) for heavy fuel oil (HFO) containing 2.51 wt % sulfur. Unimodal (∼30 nm) and bimodal (∼35 nm; ∼75 nm) particle number size distributions (NSDs) were observed when the vessel operated on marine gas oil (MGO) and HFO, respectively. First-time emission measurements during fuel switching (required 24 nautical miles from coastline) showed that concentrations of sulfur dioxide (SO(2)) and particle NSD took ∼55 min to reach steady-state when switching from MGO to HFO and ∼84 min in the opposite direction. Therefore, if OGVs commence fuel change at the regulated boundary, then vessels can travel up to 90% of the distance to the port before steady-state values are re-established. The transient behavior follows a classic, nonlinear mixing function driven by the amount of fuel in day tank and the fuel consumption rate. Hence, to achieve the maximum benefits from a fuel change regulation, fuel switch boundary should be further increased to provide the intended benefits for the people living near the ports.


Assuntos
Poluição do Ar/prevenção & controle , Óleos Combustíveis , Navios , Emissões de Veículos , Algoritmos , Tamanho da Partícula
6.
J Air Waste Manag Assoc ; 61(1): 14-21, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21305884

RESUMO

Large auxiliary engines operated on ocean-going vessels in transit and at berth impact the air quality of populated areas near ports. This paper presents new information on the comparison of emission ranges from three similar engines and the effectiveness of three control technologies: switching to cleaner burning fuels, operating in the low oxides of nitrogen (NOx) mode, and selective catalytic reduction (SCR). In-use measurements of gaseous (NOx, carbon monoxide [CO], carbon dioxide [CO2]) and fine particulate matter (PM2.5; total and speciated) emissions were made on three auxiliary engines on post-PanaMax class container vessels following the International Organization for Standardization-8178-1 protocol. The in-use NOx emissions for the MAN B&W 7L32/40 engine family vary from 15 to 21.1 g/kW-hr for heavy fuel oil and 8.9 to 19.6 g/kW-hr for marine distillate oil. Use of cleaner burning fuels resulted in NOx reductions ranging from 7 to 41% across different engines and a PM2.5 reduction of up to 83%. The NOx reductions are a consequence of fuel nitrogen content and engine operation; the PM2.5 reduction is attributed to the large reductions in the hydrated sulfate and organic carbon (OC) fractions. As expected, operating in the low-NOx mode reduced NOx emissions by approximately 32% and nearly doubled elemental carbon (EC) emissions. However, PM2.5 emission factors were nearly unchanged because the EC emission factor is only approximately 5% of the total PM2.5 mass. SCR reduced the NOx emission factor to less than 2.4 g/kW-hr, but it increased the PM2.5 emissions by a factor of 1.5-3.8. This increase was a direct consequence of the conversion of sulfur dioxide to sulfate emissions on the SCR catalyst. The EC and OC fractions of PM2.5 reduced across the SCR unit.


Assuntos
Poluição do Ar/prevenção & controle , Emissões de Veículos/análise , Dióxido de Carbono/análise , Catálise , Óleos Combustíveis , Óxidos de Nitrogênio/análise , Material Particulado/análise , Navios/instrumentação
7.
Environ Sci Technol ; 45(6): 2286-92, 2011 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-21344849

RESUMO

Emissions from harbor-craft significantly affect air quality in populated regions near ports and inland waterways. This research measured regulated and unregulated emissions from an in-use EPA Tier 2 marine propulsion engine on a ferry operating in a bay following standard methods. A special effort was made to monitor continuously both the total Particulate Mass (PM) mass emissions and the real-time Particle Size Distribution (PSD). The engine was operated following the loads in ISO 8178-4 E3 cycle for comparison with the certification standards and across biodiesel blends. Real-time measurements were also made during a typical cruise in the bay. Results showed the in-use nitrogen oxide (NOx) and PM(2.5) emission factors were within the not to exceed standard for Tier 2 marine engines. Comparing across fuels we observed the following: a) no statistically significant change in NO(x) emissions with biodiesel blends (B20, B50); b) ∼ 16% and ∼ 25% reduction of PM(2.5) mass emissions with B20 and B50 respectively; c) a larger organic carbon (OC) to elemental carbon (EC) ratio and organic mass (OM) to OC ratio with B50 compared to B20 and B0; d) a significant number of ultrafine nuclei and a smaller mass mean diameter with increasing blend-levels of biodiesel. The real-time monitoring of gaseous and particulate emissions during a typical cruise in the San Francisco Bay (in-use cycle) revealed important effects of ocean/bay currents on emissions: NO(x) and CO(2) increased 3-fold; PM(2.5) mass increased 6-fold; and ultrafine particles disappeared due to the effect of bay currents. This finding has implications on the use of certification values instead of actual in-use emission values when developing inventories. Emission factors for some volatile organic compounds (VOCs), carbonyls, and poly aromatic hydrocarbons (PAHs) are reported as supplemental data.


Assuntos
Poluentes Atmosféricos/análise , Biocombustíveis/análise , Material Particulado/análise , Navios , Emissões de Veículos/análise , Monitoramento Ambiental , Tamanho da Partícula
8.
Environ Sci Technol ; 42(19): 7098-103, 2008 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-18939532

RESUMO

This work presents an all-inclusive set of regulated and nonregulated emission factors for the main propulsion engine (ME), auxiliary engine (AE) and an auxiliary boiler on a Suezmax class tanker while operating at sea. The data include criteria pollutants (carbon monoxide, nitrogen oxides, sulfur oxides, and particulate matter), a greenhouse gas (carbon dioxide), the principal speciated hydrocarbons needed for human health risk assessments, and a detailed analysis of the PM into its primary constituents (ions, elements, organic, and elemental carbon). Measurements followed ISO 8178-1 methods with modifications described in the paper. The vessel burned two fuels: a heavy fuel oil in the ME and boiler and a distillate fuel in the AE. The weighted NO(x) emissions for the ME and AE are 19.87 +/- 0.95 and 13.57 +/- 0.31 g/kWh, respectively. The weighted PM mass emissions factor is 1.60 +/- 0.08 g/kWh for the ME and 0.141 +/- 0.005 g/kWh for the AE, with the sulfate content of the PM being the root cause for the difference. For the ME, sulfate with associated water is about 75% of total PM mass, and the organic carbon ranges from 15 to 25% of the PM mass. A deeper analysis showed that the conversion of fuel sulfur to sulfate in the ME ranged from 1.4to 5%. This article also provides emission factors for selected polycyclic aromatic hydrocarbons, heavy alkanes, carbonyls, light hydrocarbon species, metals, and ions for the ME, AE, and the boiler.


Assuntos
Petróleo/análise , Navios , Emissões de Veículos/análise , Carbono/análise , Elementos Químicos , Gases/análise , Metais/análise , Metano/análise , Oceanos e Mares , Material Particulado/análise , Hidrocarbonetos Policíclicos Aromáticos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...