Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Mol Basis Dis ; 1870(4): 167036, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38286213

RESUMO

At least 53 mutations in the microtubule associated protein tau gene (MAPT) have been identified that cause frontotemporal dementia. 47 of these mutations are localized between exons 7 and 13. They could thus affect the formation of circular RNAs (circRNAs) from the MAPT gene that occurs through backsplicing from exon 12 to either exon 10 or exon 7. We analyzed representative mutants and found that five FTDP-17 mutations increase the formation of 12➔7 circRNA and three different mutations increase the amount of 12➔10 circRNA. CircRNAs are translated after undergoing adenosine to inosine RNA editing, catalyzed by ADAR enzymes. We found that the interferon induced ADAR1-p150 isoform has the strongest effect on circTau RNA translation. ADAR1-p150 activity had a stronger effect on circTau RNA expression and strongly decreased 12➔7 circRNA, but unexpectedly increased 12➔10 circRNA. In both cases, ADAR-activity strongly promoted translation of circTau RNAs. Unexpectedly, we found that the 12➔7 circTau protein interacts with eukaryotic initiation factor 4B (eIF4B), which is reduced by four FTDP-17 mutations located in the second microtubule domain. These are the first studies of the effect of human mutations on circular RNA formation and translation. They show that point mutations influence circRNA expression levels, likely through changes in pre-mRNA structures. The effect of the mutations is surpassed by editing of the circular RNAs, leading to their translation. Thus, circular RNAs and their editing status should be considered when analyzing FTDP-17 mutations.


Assuntos
Demência Frontotemporal , Humanos , Demência Frontotemporal/genética , Mutação , RNA/genética , RNA Circular/genética , Proteínas tau/genética
2.
bioRxiv ; 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37786725

RESUMO

At least 53 mutations in the microtubule associated protein tau gene (MAPT) have been identified that cause frontotemporal dementia. 47 of these mutations are localized between exons 7 and 13. They could thus affect the formation of circular RNAs (circRNAs) from the MAPT gene that occur through backsplicing from exon 12 to either exon 10 or exon 7. We analyzed representative mutants and found that five FTDP-17 mutations increase the formation of 12➔7 circRNA and three different mutations increase the amount of 12➔10 circRNA. CircRNAs are translated after undergoing adenosine to inosine RNA editing, catalyzed by ADAR enzymes. We found that the interferon induced ADAR1-p150 isoform has the strongest effect on circTau RNA translation. ADAR1-p150 activity had a stronger effect on circTau RNA expression and strongly decreased 12➔7 circRNA, but unexpectedly increased 12➔10 circRNA. In both cases, ADAR-activity strongly promoted translation of circTau RNAs. Unexpectedly, we found that the 12➔7 circTau protein interacts with eukaryotic initiation factor 4B (eIF4B), which is reduced by four FTDP-17 mutations located in the second microtubule domain. These are the first studies of the effect of human mutations on circular RNA formation and translation. They show that point mutations influence circRNA expression levels, likely through changes in the secondary pre-mRNA structures. The effect of the mutations is surpassed by editing of the circular RNAs, leading to their translation. Thus, circular RNAs and their editing status should be considered when analyzing FTDP-17 mutations. Highlights: 47/53 known FTDP-17 mutations are located in regions that could influence generation of circular RNAs from the MAPT geneCircular Tau RNAs are translated after adenosine to inosine RNA editing, most effectively caused by ADAR1-p150FTDP-17 mutations influence both circTau RNA and circTau protein expression levelsCircTau protein expression levels do not correlate with circTau RNA expression levelsCircTau proteins bind to eukaryotic initiation factor 4B, which is antagonized by FTDP-17 mutations in exon 10.

3.
J Vis Exp ; (157)2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-32225139

RESUMO

In addition to linear mRNAs, many eukaryotic genes generate circular RNAs. Most circular RNAs are generated by joining a 5' splice site with an upstream 3' splice site within a pre-mRNA, a process called back-splicing. This circularization is likely aided by secondary structures in the pre-mRNA that bring the splice sites into close proximity. In human genes, Alu elements are thought to promote these secondary RNA structures, as Alu elements are abundant and exhibit base complementarities with each other when present in opposite directions in the pre-mRNA. Here, we describe the generation and analysis of large, Alu element containing reporter genes that form circular RNAs. Through optimization of cloning protocols, reporter genes with up to 20 kb insert length can be generated. Their analysis in co-transfection experiments allows the identification of regulatory factors. Thus, this method can identify RNA sequences and cellular components involved in circular RNA formation.


Assuntos
Elementos Alu/genética , RNA Circular/genética , Sequência de Bases , DNA/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Exorribonucleases/metabolismo , Genes Reporter , Genoma , Humanos , Reação em Cadeia da Polimerase , RNA Mensageiro/genética , Reprodutibilidade dos Testes , Mapeamento por Restrição
4.
Biochim Biophys Acta Gene Regul Mech ; 1862(11-12): 194410, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31421281

RESUMO

Circular RNAs are a recently discovered class of RNAs formed by covalently linking the 5' and 3' end of an RNA. Pre-mRNAs generate circular RNAs through a back-splicing mechanism. Whereas in linear splicing a 5' splice site is connected to a downstream 3' splice site, in back-splicing the 5' splice site is connected to an upstream 3' splice site. Both mechanisms use the spliceosome for catalysis. For back-splicing to occur, the back-splice sites must frequently be brought into close proximity, which is achieved through the formation of secondary structures in the pre-mRNA. In general, these pre-mRNA structures are formed by RNA base pairing between complementary sequences flanking the back-splicing sites. Proteins can abolish these RNA structures through binding to one of the complementary strands. However, proteins can also promote back-splicing without strong RNA structures through multimerization after binding to intronic regions flanking circular exons. In humans, Alu-elements comprising around 11% of the human genome are the best-characterized elements generating structures promoting circular RNA formation. Thus, intronic pre-mRNA structures contribute to the formation of circular RNAs.


Assuntos
Precursores de RNA/química , Splicing de RNA , RNA Circular/química , Elementos Alu , Pareamento de Bases , Humanos , Modelos Moleculares , Conformação de Ácido Nucleico , Sinais de Poliadenilação na Ponta 3' do RNA , Sítios de Splice de RNA , Spliceossomos/química , Spliceossomos/genética
5.
Neurosci Lett ; 684: 132-139, 2018 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-29969651

RESUMO

The serotonin receptor 2C (5HT2C) is an important drug target to treat obesity and depression. Its pre-mRNA undergoes alternative splicing, encoding a short RNA1 isoform that is localized intracellularly and a full-length isoform (RNA2) that can reach the cell membrane. These splicing isoforms are deregulated in Prader-Willi syndrome (PWS), due to the loss of a trans-acting regulatory RNA, SNORD115. Here we show that the 5HT2C mRNA is expressed in the posterior pituitary, suggesting that 5HT2C mRNA is generated in the hypothalamus and subsequently conveyed by axonal transport. In the pituitary, the ratio of 5HT2C isoforms is regulated by feeding, and can be manipulated using a splice-site changing oligonucleotide injected into the blood. The pituitary expression of the 5HT2C mRNA may constitute a previously unknown mechanism whereby serotonin in the circulation or drugs targeting the 5HT2C might induce side-effects. Finally, the deregulation of 5HT2C splicing isoforms in PWS could contribute to the known hormonal imbalances.


Assuntos
Comportamento Alimentar/fisiologia , Neuro-Hipófise/metabolismo , RNA Mensageiro/biossíntese , Receptor 5-HT2C de Serotonina/biossíntese , Adulto , Animais , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Isoformas de Proteínas/biossíntese , Ratos , Ratos Sprague-Dawley
6.
Biochim Biophys Acta Mol Basis Dis ; 1864(9 Pt B): 2753-2760, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29729314

RESUMO

The microtubule-associated protein Tau, generated by the MAPT gene is involved in dozens of neurodegenerative conditions ("tauopathies"), including Alzheimer's disease (AD) and frontotemporal lobar degeneration/frontotemporal dementia (FTLD/FTD). The pre-mRNA of MAPT is well studied and its aberrant pre-mRNA splicing is associated with frontotemporal dementia. Using a PCR screen of RNA from human brain tissues, we found that the MAPT locus generates circular RNAs through a backsplicing mechanism from exon 12 to either exon 10 or 7. MAPT circular RNAs are localized in the cytosol and contain open reading frames encoding Tau protein fragments. The MAPT exon 10 is alternatively spliced and proteins involved in its regulation, such as CLK2, SRSF7/9G8, PP1 (protein phosphatase 1) and NIPP1 (nuclear inhibitor of PP1) reduce the abundance of the circular MAPT exon 12 → 10 backsplice RNA after being transfected into cultured HEK293 cells. In summary, we report the identification of new bona fide human brain RNAs produced from the MAPT locus. These may be a component of normal human brain Tau regulation and, since the circular RNAs could generate high molecular weight proteins with multiple microtubule binding sites, they could contribute to taupathies.


Assuntos
Demência Frontotemporal/genética , Precursores de RNA/genética , RNA/genética , Tauopatias/genética , Proteínas tau/genética , Idoso , Idoso de 80 Anos ou mais , Processamento Alternativo , Encéfalo/metabolismo , Encéfalo/patologia , Éxons/genética , Feminino , Demência Frontotemporal/patologia , Células HEK293 , Humanos , Masculino , Mutação , RNA Circular , Tauopatias/patologia
7.
Bioessays ; 39(6)2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28505386

RESUMO

C/D box snoRNAs (SNORDs) are an abundantly expressed class of short, non-coding RNAs that have been long known to perform 2'-O-methylation of rRNAs. However, approximately half of human SNORDs have no predictable rRNA targets, and numerous SNORDs have been associated with diseases that show no defects in rRNAs, among them Prader-Willi syndrome, Duplication 15q syndrome and cancer. This apparent discrepancy has been addressed by recent studies showing that SNORDs can act to regulate pre-mRNA alternative splicing, mRNA abundance, activate enzymes, and be processed into shorter ncRNAs resembling miRNAs and piRNAs. Furthermore, recent biochemical studies have shown that a given SNORD can form both methylating and non-methylating ribonucleoprotein complexes, providing an indication of the likely physical basis for such diverse new functions. Thus, SNORDs are more structurally and functionally diverse than previously thought, and their role in gene expression is under-appreciated. The action of SNORDs in non-methylating complexes can be substituted with oligonucleotides, allowing devising therapies for diseases like Prader-Willi syndrome.


Assuntos
Regulação da Expressão Gênica , RNA Nucleolar Pequeno/metabolismo , Ribonucleoproteínas/metabolismo , Animais , Humanos , Metilação , Síndrome de Prader-Willi/tratamento farmacológico , Síndrome de Prader-Willi/metabolismo , Precursores de RNA/metabolismo , RNA Ribossômico/metabolismo , Leveduras/genética , Leveduras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...