Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Neurosci ; 21(12): 1-13, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30455457

RESUMO

In addition to cognitive impairments, neurodevelopmental disorders often result in sensory processing deficits. However, the biological mechanisms that underlie impaired sensory processing associated with neurodevelopmental disorders are generally understudied and poorly understood. We found that SYNGAP1 haploinsufficiency in humans, which causes a sporadic neurodevelopmental disorder defined by cognitive impairment, autistic features, and epilepsy, also leads to deficits in tactile-related sensory processing. In vivo neurophysiological analysis in Syngap1 mouse models revealed that upper-lamina neurons in somatosensory cortex weakly encode information related to touch. This was caused by reduced synaptic connectivity and impaired intrinsic excitability within upper-lamina somatosensory cortex neurons. These results were unexpected, given that Syngap1 heterozygosity is known to cause circuit hyperexcitability in brain areas more directly linked to cognitive functions. Thus, Syngap1 heterozygosity causes a range of circuit-specific pathologies, including reduced activity within cortical neurons required for touch processing, which may contribute to sensory phenotypes observed in patients.


Assuntos
Rede Nervosa/fisiopatologia , Transtornos de Sensação/genética , Córtex Somatossensorial/fisiopatologia , Percepção do Tato/fisiologia , Tato/fisiologia , Proteínas Ativadoras de ras GTPase/genética , Animais , Cognição/fisiologia , Feminino , Haploinsuficiência , Humanos , Masculino , Camundongos , Neurônios/fisiologia , Técnicas de Patch-Clamp , Sistema de Registros , Transtornos de Sensação/fisiopatologia
2.
J Neurodev Disord ; 10(1): 6, 2018 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-29402231

RESUMO

BACKGROUND: Pathologic mutations in SYNGAP1 cause a genetically defined form of intellectual disability (ID) with comorbid epilepsy and autistic features. While only recently discovered, pathogenicity of this gene is a relatively frequent genetic cause of classically undefined developmental delay that progresses to ID with commonly occurring comorbidities. MAIN BODY: A meeting of 150 people was held that included affected individuals and their caregivers, clinicians that treat this and related brain disorders, neuroscientists that study SYNGAP1 biology or the function of related genes, and representatives from government agencies that fund science and approve new medical treatments. The meeting focused on developing a consensus among all stakeholders as to how best to achieve a more fundamental and profound understanding of SYNGAP1 biology and its role in human disease. SHORT CONCLUSION: From all of these proceedings, several areas of consensus emerged. The clinicians and geneticists agreed that the prevalence of epilepsy and sensory processing impairments in SYNGAP1-related brain disorders approached 100%. The neurobiologists agreed that more basic research is needed to better understand the molecular and cellular functions of the Syngap1 gene, which will lead to targets for therapeutic intervention. Finally, everyone agreed that there is a pressing need to form a robust patient registry as an initial step toward a prospective natural history study of patients with pathogenic SYNGAP1 variants.


Assuntos
Encéfalo/fisiopatologia , Deficiência Intelectual/genética , Deficiência Intelectual/fisiopatologia , Proteínas Ativadoras de ras GTPase/genética , Animais , Cuidadores , Modelos Animais de Doenças , Haploinsuficiência , Humanos , Participação dos Interessados , Pesquisa Translacional Biomédica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...