Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acc Chem Res ; 57(13): 1870-1884, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38874438

RESUMO

ConspectusThe bis-tetrahydroisoquinoline (bis-THIQ) natural products represent a medicinally important class of isoquinoline alkaloids that exhibit broad biological activities with particularly potent antitumor properties, as exemplified by the two U.S. FDA approved molecules trabectidin and lurbinectedin. Accordingly, other members within the bis-THIQ family have emerged as prime targets for synthetic chemists, aiming to innovate an orthogonal chemical production of these compounds. With the ability of these complementary strategies to reliably and predictably manipulate molecular structures with atomic precision, this should allow the preparation of synthetic derivatives not existing in nature as new drug leads in the development of novel medicines with desired biological functions.Beyond the biological perspective, bis-THIQ natural products also possess intricate and unique structures, serving as a source of intellectual stimulation for synthetic organic chemists. Within our laboratory, we have developed an integrated program that combines reaction development and target-directed synthesis, leveraging the architecturally complex molecular framework of bis-THIQ natural products as a driving force for the advancement of novel reaction methodologies. In this Account, we unveil our synthetic efforts in a comprehensive story, describing how our synthetic strategy toward bis-THIQ natural products, specifically jorunnamycin A and jorumycin, has evolved over the course of our studies through our key transformations comprising (a) the direct functionalization of isoquinoline N-oxide to prepare the bis-isoquinoline (bis-IQ) intermediate, (b) the diastereoselective and enantioselective isoquinoline hydrogenation to forge the pentacyclic skeleton of the natural product, and (c) the late-stage oxygenation chemistry to adjust the oxidation states of the A- and E-rings. First, we detail our plan in utilizing the aryne annulation strategy to prepare isoquinoline fragments for the bis-THIQ molecules. Faced with unpromising results in the direct C-H functionalization of isoquinoline N-oxide, we lay out in this Account our rationale behind the design of each isoquinoline coupling partner to overcome these challenges. Additionally, we reveal the inspiration for our hydrogenation system, the setup of our pseudo-high-throughput screening, and the extension of the developed hydrogenation protocols to other simplified isoquinolines.In the context of non-natural bis-THIQ molecules, we have successfully adapted this tandem coupling/hydrogenation approach in the preparation of perfluorinated bis-THIQs, representing the first set of electron-deficient non-natural analogues. Finally, we include our unsuccessful late-stage oxygenation attempts prior to the discovery of the Pd-catalyzed C-O cross-coupling reaction. With this full disclosure of the chemistry developed for the syntheses of bis-THIQs, we hope our orthogonal synthetic tactics will provide useful information and serve as an inspiration for the future development of bis-THIQ pharmaceuticals.


Assuntos
Tetra-Hidroisoquinolinas , Tetra-Hidroisoquinolinas/química , Tetra-Hidroisoquinolinas/síntese química , Alcaloides/química , Alcaloides/síntese química , Produtos Biológicos/química , Produtos Biológicos/síntese química
2.
Nat Rev Chem ; 5(7): 486-499, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37118440

RESUMO

Radical intermediates in organic chemistry lack a full octet of electrons and, thus, are commonly said to be electron deficient. By denotation, such a statement is technically correct; however, in modern literature, the term 'electron deficient' carries a connotation of electrophilicity. This lexical quirk leads one to predict that all radicals should behave as electrophiles, when this is not the case. Indeed, practitioners of radical chemistry have known for decades that many radicals behave as nucleophiles, sometimes strongly so. This Review aims to establish guidelines for understanding radical philicity by highlighting examples from recent literature as a demonstration of general reactivity paradigms across a series of different carbon-based and heteroatom-based radicals. We present strategies for predicting the philicity of a given radical on the basis of qualitative features of the radical's structure. Finally, we discuss the implications of radical philicity to selective hydrogen atom transfer.

3.
ACS Catal ; 10(5): 3241-3248, 2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-34046244

RESUMO

The development of a general method utilizing a hydroxymethyl directing group for asymmetric hydrogenation of 1,3-disubstituted isoquinolines to provide chiral 1,2,3,4-tetrahydroisoquinolines is reported. The reaction, which utilizes [Ir(cod)Cl]2 and a commercially available chiral xyliphos ligand, proceeds in good yield with high levels of enantioselectivity and diastereo-selectivity (up to 95% ee and >20:1 dr) on a range of differentially substituted isoquinolines. Directing group studies demonstrate that the hydroxymethyl functional group at the C1-position is more efficient at enabling hydrogenation than other substituents, although high levels of enantioselectivity were conserved across a variety of polar and non-polar functional groups. By utilizing the generated chiral ß-amino alcohol as a functional handle, the synthetic utility is further highlighted via the synthesis of 1,2-fused oxazolidine, oxazolidinone, and morpholinone tetrahydroisoquinolines in one step. Additionally, a non-natural analog of the tetrahydroprotoberberine alkaloids was successfully synthesized.

4.
Science ; 363(6424): 270-275, 2019 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-30573544

RESUMO

The bis-tetrahydroisoquinoline (bis-THIQ) natural products have been studied intensively over the past four decades for their exceptionally potent anticancer activity, in addition to strong Gram-positive and Gram-negative antibiotic character. Synthetic strategies toward these complex polycyclic compounds have relied heavily on electrophilic aromatic chemistry, such as the Pictet-Spengler reaction, that mimics their biosynthetic pathways. Herein, we report an approach to two bis-THIQ natural products, jorunnamycin A and jorumycin, that instead harnesses the power of modern transition-metal catalysis for the three major bond-forming events and proceeds with high efficiency (15 and 16 steps, respectively). By breaking from biomimicry, this strategy allows for the preparation of a more diverse set of nonnatural analogs.


Assuntos
Antineoplásicos/síntese química , Isoquinolinas/síntese química , Quinolonas/síntese química , Tetra-Hidroisoquinolinas/síntese química , Catálise , Linhagem Celular Tumoral , Descoberta de Drogas , Humanos , Hidrogenação , Estrutura Molecular
5.
Chem Rev ; 117(5): 4528-4561, 2017 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-28164696

RESUMO

Stereoconvergent catalysis is an important subset of asymmetric synthesis that encompasses stereoablative transformations, dynamic kinetic resolutions, and dynamic kinetic asymmetric transformations. Initially, only enzymes were known to catalyze dynamic kinetic processes, but recently various synthetic catalysts have been developed. This Review summarizes major advances in nonenzymatic, transition-metal-promoted dynamic asymmetric transformations reported between 2005 and 2015.

6.
Science ; 355(6323): 380-385, 2017 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-28126814

RESUMO

Transition metal catalysis has traditionally relied on organometallic complexes that can cycle through a series of ground-state oxidation levels to achieve a series of discrete yet fundamental fragment-coupling steps. The viability of excited-state organometallic catalysis via direct photoexcitation has been demonstrated. Although the utility of triplet sensitization by energy transfer has long been known as a powerful activation mode in organic photochemistry, it is surprising to recognize that photosensitization mechanisms to access excited-state organometallic catalysts have lagged far behind. Here, we demonstrate excited-state organometallic catalysis via such an activation pathway: Energy transfer from an iridium sensitizer produces an excited-state nickel complex that couples aryl halides with carboxylic acids. Detailed mechanistic studies confirm the role of photosensitization via energy transfer.

7.
Angew Chem Int Ed Engl ; 54(33): 9668-72, 2015 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-26130043

RESUMO

The combination of photoredox catalysis and enamine catalysis has enabled the development of an enantioselective α-cyanoalkylation of aldehydes. This synergistic catalysis protocol allows for the coupling of two highly versatile yet orthogonal functionalities, allowing rapid diversification of the oxonitrile products to a wide array of medicinally relevant derivatives and heterocycles. This methodology has also been applied to the total synthesis of the lignan natural product (-)-bursehernin.


Assuntos
Aldeídos/química , Produtos Biológicos/síntese química , Lactonas/síntese química , Lignanas/síntese química , Aldeídos/síntese química , Alquilação , Catálise , Modelos Moleculares , Oxirredução , Processos Fotoquímicos , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...