Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(15): 10418-10431, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38588581

RESUMO

Light-triggered dissociation of ligands forms the basis for many compounds of interest for photoactivated chemotherapy (PACT), in which medicinally active substances are released or "uncaged" from metal complexes upon illumination. Photoinduced ligand dissociation is usually irreversible, and many recent studies performed in the context of PACT focused on ruthenium(II) polypyridines and related heavy metal complexes. Herein, we report a first-row transition metal complex, in which photoinduced dissociation and spontaneous recoordination of a ligand unit occurs. Two scorpionate-type tridentate chelates provide an overall six-coordinate arylisocyanide environment for chromium(0). Photoexcitation causes decoordination of one of these six ligating units and coordination of a solvent molecule, at least in tetrahydrofuran and 1,4-dioxane solvents, but far less in toluene, and below detection limit in cyclohexane. Transient UV-vis absorption spectroscopy and quantum chemical simulations point to photoinduced ligand dissociation directly from an excited metal-to-ligand charge-transfer state. Owing to the tridentate chelate design and the substitution lability of the first-row transition metal, recoordination of the photodissociated arylisocyanide ligand unit can occur spontaneously on a millisecond time scale. This work provides insight into possible self-healing mechanisms counteracting unwanted photodegradation processes and seems furthermore relevant in the contexts of photoswitching and (photo)chemical information storage.

2.
J Am Chem Soc ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598280

RESUMO

Substituting precious elements in luminophores and photocatalysts by abundant first-row transition metals remains a significant challenge, and iron continues to be particularly attractive owing to its high natural abundance and low cost. Most iron complexes known to date face severe limitations due to undesirably efficient deactivation of luminescent and photoredox-active excited states. Two new iron(III) complexes with structurally simple chelate ligands enable straightforward tuning of ground and excited state properties, contrasting recent examples, in which chemical modification had a minor impact. Crude samples feature two luminescence bands strongly reminiscent of a recent iron(III) complex, in which this observation was attributed to dual luminescence, but in our case, there is clear-cut evidence that the higher-energy luminescence stems from an impurity and only the red photoluminescence from a doublet ligand-to-metal charge transfer (2LMCT) excited state is genuine. Photoinduced oxidative and reductive electron transfer reactions with methyl viologen and 10-methylphenothiazine occur with nearly diffusion-limited kinetics. Photocatalytic reactions not previously reported for this compound class, in particular the C-H arylation of diazonium salts and the aerobic hydroxylation of boronic acids, were achieved with low-energy red light excitation. Doublet-triplet energy transfer (DTET) from the luminescent 2LMCT state to an anthracene annihilator permits the proof of principle for triplet-triplet annihilation upconversion based on a molecular iron photosensitizer. These findings are relevant for the development of iron complexes featuring photophysical and photochemical properties competitive with noble-metal-based compounds.

3.
J Am Chem Soc ; 146(1): 954-960, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38156951

RESUMO

Harnessing sunlight via photosensitizing molecules is key for novel optical applications and solar-to-chemical energy conversion. Exploiting abundant metals such as iron is attractive but becomes challenging due to typically fast nonradiative relaxation processes. In this work, we report on the luminescence and excited-state reactivity of the heteroleptic [FeIII(pzTp)(CN)3]- complex (pzTp = tetrakis(pyrazolyl)borate), which incorporates a σ-donating trispyrazolyl chelate ligand and three monodentate σ-donating and π-accepting cyanide ligands. Contrary to the nonemissive [Fe(CN)6]3-, a broad emission band centered at 600 nm at room temperature has been recorded for the heteroleptic analogue attributed to the radiative deactivation from a 2LMCT excited state with a luminescence quantum yield of 0.02% and a lifetime of 80 ps in chloroform at room temperature. Bimolecular reactivity of the 2LMCT excited state was successfully applied to different alcohol photo-oxidation, identifying a cyanide-H bonding as a key reaction intermediate. Finally, this research demonstrated the exciting potential of [Fe(pzTp)(CN)3]- as a photo-oxidant, paving the way for further exploration and development of emissive Fe-based photosensitizers competent for photochemical transformations.

5.
J Am Chem Soc ; 145(46): 25195-25202, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37947126

RESUMO

Visible-light-driven reduction of CO2 to both CO and formate (HCOO-) was achieved in acetonitrile solutions using a homobimetallic Cu bisquaterpyridine complex. In the presence of a weak acid (water) as coreactant, the reaction rate was enhanced, and a total of ca. 766 TON (turnover number) was reached for the CO2 reduction, with 60% selectivity for formate and 28% selectivity for CO, using Ru(phen)32+ as a sensitizer and amines as sacrificial electron donors. Mechanistic studies revealed that with the help of cooperativity between two Cu centers, a bridging hydride is generated in the presence of a proton source (water) and further reacts with CO2 to give HCOO-. A second product, CO, was also produced in a parallel competitive pathway upon direct coordination of CO2 to the reduced complex. Mechanistic studies further allowed comparison of the observed reactivity to the monometallic Cu quaterpyridine complex, which only produced CO, and to the related homobimetallic Co bisquaterpyridine complex, that has been previously shown to generate formate following a mechanism not involving the formation of an intermediate hydride species.

6.
Chem Sci ; 14(44): 12774-12783, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38020384

RESUMO

Among the rare bimetallic complexes known for the reduction of CO2, CoIICoII and ZnIICoII hexamine cryptates are described as efficient photocatalysts. In close relation to the active sites of natural, CO2-reducing enzymes, we recently reported the asymmetric cryptand {NSNN}m ({NSNN}m = N[(CH2)2SCH2(m-C6H4)CH2NH(CH2)2]3N) comprising distinct sulphur- and nitrogen-rich binding sites and the corresponding CuIMII (MII = CoII, NiII, CuII) complexes. To gain insight into the effect of metals in different oxidation states and sulphur-incorporation on the photocatalytic activity, we herein investigate the CuICoII complex of {NSNN}m as catalyst for the visible light-driven reduction of CO2. After 24 h irradiation with LED light of 450 nm, CuICoII-{NSNN}m shows a high efficiency for the photocatalytic CO2-to-CO conversion with 9.22 µmol corresponding to a turnover number of 2305 and a high selectivity of 98% over the competing H2 production despite working in an acetonitrile/water (4 : 1) mixture. Experiments with mononuclear counterparts and computational studies show that the high activity can be attributed to synergistic catalysis between Cu and Co. Furthermore, it was shown that an increase of the metal distance results in the loss of synergistic effects and rather single-sited Co catalysis is observed.

7.
Science ; 381(6661): 965-972, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37651532

RESUMO

Machine-learning methods have great potential to accelerate the identification of reaction conditions for chemical transformations. A tool that gives substrate-adaptive conditions for palladium (Pd)-catalyzed carbon-nitrogen (C-N) couplings is presented. The design and construction of this tool required the generation of an experimental dataset that explores a diverse network of reactant pairings across a set of reaction conditions. A large scope of C-N couplings was actively learned by neural network models by using a systematic process to design experiments. The models showed good performance in experimental validation: Ten products were isolated in more than 85% yield from a range of couplings with out-of-sample reactants designed to challenge the models. Importantly, the developed workflow continually improves the prediction capability of the tool as the corpus of data grows.

8.
Chemistry ; 27(38): 9748-9752, 2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-33871915

RESUMO

A mild photocatalytic phenol oxygenation enabled by a continuous-flow photoreactor using visible light and pressurized air is described herein. Products for wide-ranging applications, including the synthesis of vitamins, were obtained in high yields by precisely controlling principal process parameters. The reactor design permits low organophotocatalyst loadings to generate singlet oxygen. It is anticipated that the efficient aerobic phenol oxygenation to benzoquinones and p-quinols contributes to sustainable synthesis.


Assuntos
Luz , Fenóis , Benzoquinonas , Fenol , Oxigênio Singlete
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...