Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Glia ; 71(2): 415-430, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36308278

RESUMO

Oligodendrocyte precursor cells (OPCs) are uniformly distributed in the mammalian brain; however, their function is rather heterogeneous in respect to their origin, location, receptor/channel expression and age. The basic helix-loop-helix transcription factor Olig2 is expressed in all OPCs as a pivotal determinant of their differentiation. Here, we identified a subset (2%-26%) of OPCs lacking Olig2 in various brain regions including cortex, corpus callosum, CA1 and dentate gyrus. These Olig2 negative (Olig2neg ) OPCs were enriched in the juvenile brain and decreased subsequently with age, being rarely detectable in the adult brain. However, the loss of this population was not due to apoptosis or microglia-dependent phagocytosis. Unlike Olig2pos OPCs, these subset cells were rarely labeled for the mitotic marker Ki67. And, accordingly, BrdU was incorporated only by a three-day long-term labeling but not by a 2-hour short pulse, suggesting these cells do not proliferate any more but were derived from proliferating OPCs. The Olig2neg OPCs exhibited a less complex morphology than Olig2pos ones. Olig2neg OPCs preferentially remain in a precursor stage rather than differentiating into highly branched oligodendrocytes. Changing the adjacent brain environment, for example, by acute injuries or by complex motor learning tasks, stimulated the transition of Olig2pos OPCs to Olig2neg cells in the adult. Taken together, our results demonstrate that OPCs transiently suppress Olig2 upon changes of the brain activity.


Assuntos
Lesões Encefálicas , Células Precursoras de Oligodendrócitos , Animais , Células Precursoras de Oligodendrócitos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Fator de Transcrição 2 de Oligodendrócitos/metabolismo , Oligodendroglia/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diferenciação Celular , Lesões Encefálicas/metabolismo , Mamíferos/metabolismo
2.
Front Mol Neurosci ; 15: 840948, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35431801

RESUMO

The spinal cord is the main pathway connecting brain and peripheral nervous system. Its functionality relies on the orchestrated activity of both neurons and glial cells. To date, most advancement in understanding the spinal cord inner mechanisms has been made either by in vivo exposure of its dorsal surface through laminectomy or by acute ex vivo slice preparation, likely affecting spinal cord physiology in virtue of the necessary extensive manipulation of the spinal cord tissue. This is especially true of cells immediately responding to alterations of the surrounding environment, such as microglia and astrocytes, reacting within seconds or minutes and for up to several days after the original insult. Ca2+ signaling is considered one of the most immediate, versatile, and yet elusive cellular responses of glia. Here, we induced the cell-specific expression of the genetically encoded Ca2+ indicator GCaMP3 to evaluate spontaneous intracellular Ca2+ signaling in astrocytes and microglia. Ca2+ signals were then characterized in acute ex vivo (both gray and white matter) as well as in chronic in vivo (white matter) preparations using MSparkles, a MATLAB-based software for automatic detection and analysis of fluorescence events. As a result, we were able to segregate distinct astroglial and microglial Ca2+ signaling patterns along with method-specific Ca2+ signaling alterations, which must be taken into consideration in the reliable evaluation of any result obtained in physiological as well as pathological conditions. Our study revealed a high degree of Ca2+ signaling diversity in glial cells of the murine spinal cord, thus adding to the current knowledge of the astonishing glial heterogeneity and cell-specific Ca2+ dynamics in non-neuronal networks.

4.
Glia ; 69(9): 2160-2177, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34028094

RESUMO

Astrocytes from the cerebral cortex (CTX) and cerebellum (CB) share basic molecular programs, but also form distinct spatial and functional subtypes. The regulatory epigenetic layers controlling such regional diversity have not been comprehensively investigated so far. Here, we present an integrated epigenome analysis of methylomes, open chromatin, and transcriptomes of astroglia populations isolated from the cortex or cerebellum of young adult mice. Besides a basic overall similarity in their epigenomic programs, cortical astrocytes and cerebellar astrocytes exhibit substantial differences in their overall open chromatin structure and in gene-specific DNA methylation. Regional epigenetic differences are linked to differences in transcriptional programs encompassing genes of region-specific transcription factor networks centered around Lhx2/Foxg1 in CTX astrocytes and the Zic/Irx families in CB astrocytes. The distinct epigenetic signatures around these transcription factor networks point to a complex interconnected and combinatorial regulation of region-specific transcriptomes. These findings suggest that key transcription factors, previously linked to temporal, regional, and spatial control of neurogenesis, also form combinatorial networks important for astrocytes. Our study provides a valuable resource for the molecular basis of regional astrocyte identity and physiology.


Assuntos
Astrócitos , Epigenômica , Animais , Astrócitos/metabolismo , Cerebelo/metabolismo , Córtex Cerebral/metabolismo , Epigênese Genética/genética , Fatores de Transcrição Forkhead/genética , Camundongos , Proteínas do Tecido Nervoso/metabolismo
5.
Front Immunol ; 10: 2136, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31616406

RESUMO

Autoimmune diseases (AID) such as systemic lupus erythematosus (SLE), primary Sjögren's syndrome (pSS), and rheumatoid arthritis (RA) are chronic inflammatory diseases in which abnormalities of B cell function play a central role. Although it is widely accepted that autoimmune B cells are hyperactive in vivo, a full understanding of their functional status in AID has not been delineated. Here, we present a detailed analysis of the functional capabilities of AID B cells and dissect the mechanisms underlying altered B cell function. Upon BCR activation, decreased spleen tyrosine kinase (Syk) and Bruton's tyrosine kinase (Btk) phosphorylation was noted in AID memory B cells combined with constitutive co-localization of CD22 and protein tyrosine phosphatase (PTP) non-receptor type 6 (SHP-1) along with hyporesponsiveness to TLR9 signaling, a Syk-dependent response. Similar BCR hyporesponsiveness was also noted specifically in SLE CD27- B cells together with increased PTP activities and increased transcripts for PTPN2, PTPN11, PTPN22, PTPRC, and PTPRO in SLE B cells. Additional studies revealed that repetitive BCR stimulation of normal B cells can induce BCR hyporesponsiveness and that tissue-resident memory B cells from AID patients also exhibited decreased responsiveness immediately ex vivo, suggesting that the hyporesponsive status can be acquired by repeated exposure to autoantigen(s) in vivo. Functional studies to overcome B cell hyporesponsiveness revealed that CD40 co-stimulation increased BCR signaling, induced proliferation, and downregulated PTP expression (PTPN2, PTPN22, and receptor-type PTPs). The data support the conclusion that hyporesponsiveness of AID and especially SLE B cells results from chronic in vivo stimulation through the BCR without T cell help mediated by CD40-CD154 interaction and is manifested by decreased phosphorylation of BCR-related proximal signaling molecules and increased PTPs. The hyporesponsiveness of AID B cells is similar to a form of functional anergy.


Assuntos
Doenças Autoimunes/imunologia , Linfócitos B/imunologia , Tirosina Quinase da Agamaglobulinemia/imunologia , Humanos , Proteínas Tirosina Fosfatases/imunologia , Receptores de Antígenos de Linfócitos B/imunologia , Quinase Syk/imunologia
6.
Sci Transl Med ; 11(480)2019 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-30787167

RESUMO

The incidence of allergic diseases has increased over the past 50 years, likely due to environmental factors. However, the nature of these factors and the mode of action by which they induce the type 2 immune deviation characteristic of atopic diseases remain unclear. It has previously been reported that dietary sodium chloride promotes the polarization of T helper 17 (TH17) cells with implications for autoimmune diseases such as multiple sclerosis. Here, we demonstrate that sodium chloride also potently promotes TH2 cell responses on multiple regulatory levels. Sodium chloride enhanced interleukin-4 (IL-4) and IL-13 production while suppressing interferon-γ (IFN-γ) production in memory T cells. It diverted alternative T cell fates into the TH2 cell phenotype and also induced de novo TH2 cell polarization from naïve T cell precursors. Mechanistically, sodium chloride exerted its effects via the osmosensitive transcription factor NFAT5 and the kinase SGK-1, which regulated TH2 signature cytokines and master transcription factors in hyperosmolar salt conditions. The skin of patients suffering from atopic dermatitis contained elevated sodium compared to nonlesional atopic and healthy skin. These results suggest that sodium chloride represents a so far overlooked cutaneous microenvironmental checkpoint in atopic dermatitis that can induce TH2 cell responses, the orchestrators of atopic diseases.


Assuntos
Microambiente Celular , Pele/citologia , Cloreto de Sódio/farmacologia , Células Th2/imunologia , Animais , Diferenciação Celular/efeitos dos fármacos , Polaridade Celular/efeitos dos fármacos , Microambiente Celular/efeitos dos fármacos , Citocinas/metabolismo , Dermatite Atópica/patologia , Células HEK293 , Humanos , Memória Imunológica/efeitos dos fármacos , Íons , Camundongos Endogâmicos C57BL , Fatores de Transcrição NFATC/metabolismo , Transdução de Sinais/efeitos dos fármacos , Pele/efeitos dos fármacos , Sódio/metabolismo , Células Th1/efeitos dos fármacos , Células Th1/imunologia , Células Th2/efeitos dos fármacos , Ativação Transcricional/efeitos dos fármacos
7.
Immunity ; 49(1): 120-133.e9, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-30005826

RESUMO

B lymphocytes can suppress immunity through interleukin (IL)-10 production in infectious, autoimmune, and malignant diseases. Here, we have identified a natural plasma cell subset that distinctively expresses the inhibitory receptor LAG-3 and mediates this function in vivo. These plasma cells also express the inhibitory receptors CD200, PD-L1, and PD-L2. They develop from various B cell subsets in a B cell receptor (BCR)-dependent manner independently of microbiota in naive mice. After challenge they upregulate IL-10 expression via a Toll-like receptor-driven mechanism within hours and without proliferating. This function is associated with a unique transcriptome and epigenome, including the lowest amount of DNA methylation at the Il10 locus compared to other B cell subsets. Their augmented accumulation in naive mutant mice with increased BCR signaling correlates with the inhibition of memory T cell formation and vaccine efficacy after challenge. These natural regulatory plasma cells may be of broad relevance for disease intervention.


Assuntos
Antígenos CD/genética , Expressão Gênica , Interleucina-10/biossíntese , Plasmócitos/imunologia , Animais , Antígenos CD/imunologia , Subpopulações de Linfócitos B/imunologia , Epigênese Genética , Feminino , Perfilação da Expressão Gênica , Interleucina-10/genética , Ativação Linfocitária , Masculino , Camundongos , Plasmócitos/fisiologia , Receptores de Antígenos de Linfócitos B/metabolismo , Salmonelose Animal/imunologia , Transdução de Sinais , Linfócitos T/imunologia , Receptores Toll-Like/metabolismo , Regulação para Cima/genética , Vacinas/imunologia , Proteína do Gene 3 de Ativação de Linfócitos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...