Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Leukoc Biol ; 115(3): 420-434, 2024 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-37939820

RESUMO

Cystic fibrosis is a life-shortening genetic disorder, caused by mutations in the gene that encodes cystic fibrosis transmembrane-conductance regulator, a cAMP-activated chloride and bicarbonate channel. Persistent neutrophilic inflammation is a major contributor to cystic fibrosis lung disease. However, how cystic fibrosis transmembrane-conductance regulator loss of function leads to excessive inflammation and its clinical sequela remains incompletely understood. In this study, neutrophils from F508del-CF and healthy control participants were compared for gene transcription. We found that cystic fibrosis circulating neutrophils have a prematurely primed basal state with significantly higher scores for activation, chemotaxis, immune signaling, and pattern recognition. Such an irregular basal state appeared not related to the blood environment and was also observed in neutrophils derived from the F508del-CF HL-60 cell line, indicating an innate characteristic of the phenotype. Lipopolysaccharides (LPS) stimulation drastically shifted the transcriptional landscape of healthy control neutrophils toward a robust immune response; however, cystic fibrosis neutrophils were immune-exhausted, reflected by abnormal cell aging and fate determination in gene programming. Moreover, cystic fibrosis sputum neutrophils differed significantly from cystic fibrosis circulating neutrophils in gene transcription with increased inflammatory response, aging, apoptosis, and necrosis, suggesting additional environmental influences on the neutrophils in cystic fibrosis lungs. Taken together, our data indicate that loss of cystic fibrosis transmembrane-conductance regulator function has intrinsic effects on neutrophil immune programming, leading to premature priming and dysregulated response to challenge.


Assuntos
Fibrose Cística , Humanos , Fibrose Cística/genética , Neutrófilos , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Imunidade , Inflamação , Mutação
2.
Front Immunol ; 14: 1242381, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38035088

RESUMO

Cystic fibrosis (CF) is an autosomal recessive genetic disorder caused by mutations in the CF Transmembrane-conductance Regulator (CFTR) gene. The most severe pathologies of CF occur in the lung, manifesting as chronic bacterial infection, persistent neutrophilic inflammation, and mucopurulent airway obstruction. Despite increasing knowledge of the CF primary defect and the resulting clinical sequelae, the relationship between the CFTR loss of function and the neutrophilic inflammation remains incompletely understood. Here, we report that loss of CFTR function in macrophages causes extended lung inflammation. After intratracheal inoculation with Pseudomonas aeruginosa, mice with a macrophage-specific Cftr-knockout (Mac-CF) were able to mount an effective host defense to clear the bacterial infection. However, three days post-inoculation, Mac-CF lungs demonstrated significantly more neutrophil infiltration and higher levels of inflammatory cytokines, suggesting that Mac-CF mice had a slower resolution of inflammation. Single-cell RNA sequencing revealed that absence of CFTR in the macrophages altered the cell transcriptional program, affecting the cell inflammatory and immune responses, antioxidant system, and mitochondrial respiration. Thus, loss of CFTR function in macrophages influences cell homeostasis, leading to a dysregulated cellular response to infection that may exacerbate CF lung disease.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Camundongos , Animais , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/complicações , Pulmão/patologia , Macrófagos/patologia , Inflamação/patologia
3.
J Leukoc Biol ; 113(6): 604-614, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36976023

RESUMO

Cystic fibrosis is a life-threatening genetic disorder caused by mutations in the CFTR chloride channel. Clinically, over 90% of patients with cystic fibrosis succumb to pulmonary complications precipitated by chronic bacterial infections, predominantly by Pseudomonas aeruginosa and Staphylococcus aureus. Despite the well-characterized gene defect and clearly defined clinical sequelae of cystic fibrosis, the critical link between the chloride channel defect and the host defense failure against these specific pathogens has not been established. Previous research from us and others has uncovered that neutrophils from patients with cystic fibrosis are defective in phagosomal production of hypochlorous acid, a potent microbicidal oxidant. Here we report our studies to investigate if this defect in hypochlorous acid production provides P. aeruginosa and S. aureus with a selective advantage in cystic fibrosis lungs. A polymicrobial mixture of cystic fibrosis pathogens (P. aeruginosa and S. aureus) and non-cystic fibrosis pathogens (Streptococcus pneumoniae, Klebsiella pneumoniae, and Escherichia coli) was exposed to varied concentrations of hypochlorous acid. The cystic fibrosis pathogens withstood higher concentrations of hypochlorous acid than did the non-cystic fibrosis pathogens. Neutrophils derived from F508del-CFTR HL-60 cells killed P. aeruginosa less efficiently than did the wild-type counterparts in the polymicrobial setting. After intratracheal challenge in wild-type and cystic fibrosis mice, the cystic fibrosis pathogens outcompeted the non-cystic fibrosis pathogens and exhibited greater survival in the cystic fibrosis lungs. Taken together, these data indicate that reduced hypochlorous acid production due to the absence of CFTR function creates an environment in cystic fibrosis neutrophils that provides a survival advantage to specific microbes-namely, S. aureus and P. aeruginosa-in the cystic fibrosis lungs.


Assuntos
Fibrose Cística , Infecções por Pseudomonas , Animais , Camundongos , Neutrófilos/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Ácido Hipocloroso/metabolismo , Staphylococcus aureus/metabolismo , Fibrose Cística/patologia , Pulmão/patologia , Fibrose , Pseudomonas aeruginosa , Infecções por Pseudomonas/microbiologia
4.
medRxiv ; 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36747678

RESUMO

Cystic fibrosis (CF) is a life-shortening genetic disorder, caused by mutations in the gene that encodes Cystic Fibrosis Transmembrane-conductance Regulator (CFTR), a cAMP-activated chloride and bicarbonate channel. Although multiple organ systems can be affected, CF lung disease claims the most morbidity and mortality due to chronic bacterial infection, persistent neutrophilic inflammation, and mucopurulent airway obstruction. Despite the clear predominance of neutrophils in these pathologies, how CFTR loss-of-function affects these cells per se remains incompletely understood. Here, we report the profiling and comparing of transcriptional signatures of peripheral blood neutrophils from CF participants and healthy human controls (HC) at the single-cell level. Circulating CF neutrophils had an aberrant basal state with significantly higher scores for activation, chemotaxis, immune signaling, and pattern recognition, suggesting that CF neutrophils in blood are prematurely primed. Such an abnormal basal state was also observed in neutrophils derived from an F508del-CF HL-60 cell line, indicating an innate characteristic of the phenotype. LPS stimulation drastically shifted the transcriptional landscape of HC circulating neutrophils towards a robust immune response, however, CF neutrophils were immune-exhausted. Moreover, CF blood neutrophils differed significantly from CF sputum neutrophils in gene programming with respect to neutrophil activation and aging, as well as inflammatory signaling, highlighting additional environmental influences on the neutrophils in CF lungs. Taken together, loss of CFTR function has intrinsic effects on neutrophil immune programming that leads to premature priming and dysregulated response to challenge.

5.
PLoS Pathog ; 19(1): e1011098, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36652494

RESUMO

Proline acquired via specific transporters can serve as a proteinogenic substrate, carbon and nitrogen source, or osmolyte. Previous reports have documented that Staphylococcus aureus, a major community and nosocomial pathogen, encodes at least four proline transporters, PutP, OpuC, OpuD, and ProP. A combination of genetic approaches and 3H-proline transport assays reveal that a previously unrecognized transporter, ProT, in addition to PutP, are the major proline transporters in S. aureus. Complementation experiments using constitutively expressed non-cognate promoters found that proline transport via OpuD, OpuC, and ProP is minimal. Both proline biosynthesis from arginine and proline transport via ProT are critical for growth when S. aureus is grown under conditions of high salinity. Further, proline transport mediated by ProT or PutP are required for growth in media with and without glucose, indicating both transporters function to acquire proline for proteinogenic purposes in addition to acquisition of proline as a carbon/nitrogen source. Lastly, inactivation of proT and putP resulted in a significant reduction (5 log10) of bacterial burden in murine skin-and-soft tissue infection and bacteremia models, suggesting that proline transport is required to establish a S. aureus infection.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Animais , Camundongos , Staphylococcus aureus/genética , Infecções Estafilocócicas/microbiologia , Prolina
6.
J Leukoc Biol ; 108(6): 1777-1785, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32531843

RESUMO

Persistent neutrophilic inflammation is a hallmark of cystic fibrosis (CF). However, the mechanisms underlying this outstanding pathology remain incompletely understood. Here, we report that CFTR in myeloid immune cells plays a pivotal role in control of neutrophilic inflammation. Myeloid CFTR-Knockout (Mye-Cftr-/-) mice and congenic wild-type (WT) mice were challenged peritoneally with zymosan particles at different doses, creating aseptic peritonitis with varied severity. A high-dose challenge resulted in significantly higher mortality in Mye-Cftr-/- mice, indicating an intrinsic defect in host control of inflammation in mice whose myeloid cells lack CF. The low-dose challenge demonstrated an impaired resolution of inflammation in Mye-Cftr-/- mice, reflected by a significant overproduction of proinflammatory cytokines, including neutrophil chemokines MIP-2 and KC, and sustained accumulation of neutrophils. Tracing neutrophil mobilization in vivo demonstrated that myeloid CF mice recruited significantly more neutrophils than did WT mice. Pulmonary challenge with zymosan elicited exuberant inflammation in the lung and recapitulated the findings from peritoneal challenge. To determine the major type of cell that was primarily responsible for the over-recruitment of neutrophils, we purified and cultured ex vivo zymosan-elicited peritoneal neutrophils and macrophages. The CF neutrophils produced significantly more MIP-2 than did the WT counterparts, and peripheral blood neutrophils isolated from myeloid CF mice also produced significantly more MIP-2 after zymosan stimulation in vitro. These data altogether suggest that CFTR dysfunction in myeloid immune cells, especially neutrophils, leads to hyperinflammation and excessive neutrophil mobilization in the absence of infection. Thus, dysregulated inflammation secondary to abnormal or absent CFTR in myeloid cells may underlie the clinically observed neutrophilic inflammation in CF.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/deficiência , Fibrose Cística/imunologia , Macrófagos Peritoneais/imunologia , Neutrófilos/imunologia , Animais , Fibrose Cística/patologia , Regulador de Condutância Transmembrana em Fibrose Cística/imunologia , Inflamação/induzido quimicamente , Inflamação/genética , Inflamação/imunologia , Inflamação/patologia , Mutação com Perda de Função , Macrófagos Peritoneais/patologia , Camundongos , Camundongos Mutantes , Neutrófilos/patologia , Zimosan/toxicidade
7.
Malar J ; 12: 287, 2013 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-23961915

RESUMO

BACKGROUND: The piggyBac transposon system provides a powerful forward genetics tool to study gene function in Plasmodium parasites via random insertion mutagenesis and phenotypic screening. The identification of genotype of piggyBac mutants in the Plasmodium genome is thus an indispensable step in forward genetic analysis. Several PCR-based approaches have been used to identify the piggyBac insertion sites in Plasmodium falciparum and Plasmodium berghei, but all are tedious and inefficient. Next generation sequencing can produce large amounts of sequence data and is particularly suitable for genome-wide association studies. In this study, the Next generation sequencing technology was employed to efficiently identify piggyBac insertion sites in the genome of P. berghei. METHODS: Plasmodium berghei parasites were co-transfected with piggyBac donor and helper plasmids. Initially, the classical inverse PCR method was used to identify the existence of piggyBac insertions in the P. berghei genome. The whole genome of post-transfection parasites was subsequently sequenced with a PCR-free paired-end module using the Illumina HiSeq sequencing system. The two distinct methods ('BLAST method' and 'SOAP method') were employed to identify piggyBac insertion sites in the P. berghei genome with Illumina sequencing data. All the identified piggyBac insertions were further tested by half-nested PCR. RESULTS: The inverse PCR method resulted in a very low yield of ten individual insertions identified. Conversely, 47 piggyBac insertions were identified from about 1 Gb of Illumina sequencing data via the two distinct analysis methods. The majority of identified piggyBac insertions were confirmed by half-nested PCR. In addition, 1,850 single nucleotide polymorphisms were identified through alignment of the Illumina sequencing data of the P. berghei ANKA strain used in this study with the reference genome sequences. CONCLUSION: This study demonstrates that a high-throughput genome sequencing approach is an efficient tool for the identification of piggyBac-mediated insertions in Plasmodium parasites.


Assuntos
DNA de Protozoário/genética , Genoma de Protozoário , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Mutagênese Insercional , Plasmodium berghei/genética , Animais , Elementos de DNA Transponíveis , DNA de Protozoário/química , Camundongos , Biologia Molecular/métodos , Plasmídeos , Recombinação Genética
8.
Sci Rep ; 2: 346, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22468230

RESUMO

Schistosomes, unlike malaria parasites, are in their diploid stage when targeted by the human immune system. Diploids can be either homozygous or heterozygous. The difference has profound significance for developing immunity and yet has not previously been addressed. We examined the implications of zygosity on immunity to a diploid pathogen, Schistosoma japonicum and showed that the diploid state, and its associated heterozygous advantage, significantly affects the outcome of attack by the immune system and the accumulation of antigenic diversity in the parasite population. We demonstrate here that diploidy provides a novel means of immune evasion for diploid pathogens.


Assuntos
Evasão da Resposta Imune , Schistosoma japonicum/patogenicidade , Animais , Diploide , Ensaio de Imunoadsorção Enzimática , Polimorfismo Genético , Schistosoma japonicum/genética
9.
J Biol Chem ; 286(42): 36619-30, 2011 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-21880705

RESUMO

Acidocalcisomes are acidic calcium and polyphosphate storage organelles found in a diverse range of organisms. Here we present evidence that the biogenesis of acidocalcisomes in Trypanosoma brucei is linked to the expression of adaptor protein-3 (AP-3) complex. Localization studies in cell lines expressing ß3 and δ subunits of AP-3 fused to epitope tags revealed their partial co-localization with the vacuolar proton pyrophosphatase, a marker of acidocalcisomes, with the Golgi marker Golgi reassembly and stacking protein, and with antibodies against the small GTPase Rab11. Ablation of the ß3 subunit by RNA interference (RNAi) resulted in disappearance of acidocalcisomes from both procyclic and bloodstream form trypanosomes, as revealed by immmunofluorescence and electron microscopy assays, with no alterations in trafficking of different markers to lysosomes. Knockdown of the ß3 subunit resulted in lower acidic calcium, pyrophosphate, and polyphosphate content as well as defects in growth in culture, resistance to osmotic stress, and virulence in mice. Similar results were obtained by knocking down the expression of the δ subunit of AP-3. These results indicate that AP-3 is essential for the biogenesis of acidocalcisomes and for growth and virulence of T. brucei.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Complexos Multiproteicos/metabolismo , Organelas/metabolismo , Proteínas de Protozoários/metabolismo , Fatores de Transcrição/metabolismo , Trypanosoma brucei brucei/crescimento & desenvolvimento , Trypanosoma brucei brucei/patogenicidade , Animais , Proteínas de Ligação a DNA/genética , Técnicas de Silenciamento de Genes , Camundongos , Complexos Multiproteicos/genética , Organelas/genética , Proteínas de Protozoários/genética , Fatores de Transcrição/genética , Trypanosoma brucei brucei/genética , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...