Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Microbiol ; 70(12)2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34878374

RESUMO

Introduction. Antibiotic resistance, particularly in cases of sepsis, has emerged as a growing global public health concern and economic burden. Current methods of blood culture and antimicrobial susceptibility testing of agents involved in sepsis can take as long as 3-5 days. It is vital to rapidly identify which antimicrobials can be used to effectively treat sepsis cases on an individual basis. Here, we present a pentaplex, real-time PCR-based assay that can quickly identify the most common beta-lactamase genes (Klebsiella pneumoniae carbapenemase (KPC); New Delhi metallo-beta-lactamase (NDM); cefotaximase-Munich (CTX-M); cephamycin AmpC beta-lactamases (CMY); and Oxacillinase-48 (OXA-48)) from pathogens derived directly from the blood of patients presenting with bacterial septicemia.Aim. To develop an assay which can rapidly identify the most common beta-lactamase genes in Carbapenem-resistant Enterobacteriaceae bacteria (CREs) from the United States.Hypothesis/Gap Statement. Septicemia caused by carbapenem-resistant bacteria has a death rate of 40-60 %. Rapid diagnosis of antibiotic susceptibility directly from bacteria in blood by identification of beta-lactamase genes will greatly improve survival rates. In this work, we develop an assay capable of concurrently identifying the five most common beta-lactamase and carbapenemase genes.Methodology. Primers and probes were created which can identify all subtypes of Klebsiella pneumoniae carbapenemase (KPC); New Delhi metallo-beta-lactamase (NDM); cefotaximase-Munich (CTX); cephamycin AmpC beta-lactamase (CMY); and oxacillinase-48 (OXA-48). The assay was validated using 13 isolates containing various PCR targets from the Centre for Disease Control Antimicrobial Resistance Isolate Bank Enterobacterales Carbapenemase Diversity Panel. Blood obtained from volunteers was spiked with CREs and bacteria were separated, lysed, and subjected to analysis via the pentaplex assay.Results. This pentaplex assay successfully identified beta-lactamase genes derived from bacteria separated from blood at concentrations of 4-8 c.f.u. ml-1.Conclusion. This assay will improve patient outcomes by supplying physicians with critical drug resistance information within 2 h of septicemia onset, allowing them to prescribe effective antimicrobials corresponding to the resistance gene(s) present in the pathogen. In addition, information supplied by this assay will lessen the inappropriate use of broad-spectrum antimicrobials and prevent the evolution of further antibiotic resistance.


Assuntos
Reação em Cadeia da Polimerase em Tempo Real , Sepse , beta-Lactamases , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Proteínas de Bactérias/genética , Cefamicinas , Humanos , Klebsiella pneumoniae/enzimologia , Klebsiella pneumoniae/genética , Testes de Sensibilidade Microbiana , Sepse/diagnóstico , Sepse/tratamento farmacológico , beta-Lactamases/genética
2.
Biotechnol Prog ; 36(1): e2892, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31425635

RESUMO

Rapid diagnosis of blood infections requires fast and efficient separation of bacteria from blood. We have developed spinning hollow disks that separate bacteria from blood cells via the differences in sedimentation velocities of these particles. Factors affecting separation included the spinning speed and duration, and disk size. These factors were varied in dozens of experiments for which the volume of separated plasma, and the concentration of bacteria and red blood cells (RBCs) in separated plasma were measured. Data were correlated by a parameter of characteristic sedimentation length, which is the distance that an idealized RBC would travel during the entire spin. Results show that characteristic sedimentation length of 20 to 25 mm produces an optimal separation and collection of bacteria in plasma. This corresponds to spinning a 12-cm-diameter disk at 3,000 rpm for 13 s. Following the spin, a careful deceleration preserves the separation of cells from plasma and provides a bacterial recovery of about 61 ± 5%.


Assuntos
Centrifugação , Eritrócitos/microbiologia , Escherichia coli/isolamento & purificação , Humanos , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...