Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
Alzheimers Dement ; 20(6): 4373-4380, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38752508

RESUMO

INTRODUCTION: This study investigates the effect of apolipoprotein E (APOE) genotype on neurology plasma biomarkers in cognitively healthy Super-Seniors. METHODS: Three hundred seventy plasma specimens from Super-Senior participants ≥ 85 years old, who have never been diagnosed with dementia, cancer, diabetes, cardiovascular, or major pulmonary disease, were analyzed on the Quanterix Simoa HD-X analyzer using commercial Neurology 4-plex E and phosphorylated tau (p-tau)181 assays. RESULTS: Eighty (22%) participants were APOE ε4 carriers and 290 (73%) were non-carriers. No significant differences were found between APOE ε4 carriers and non-carriers regarding age, sex, or Mini-Mental State Examination scores. In APOE ε4 carriers, plasma amyloid beta 42/40 was lower and p-tau181 and glial fibrillary acidic protein were higher compared to non-APOE ε4 carriers. After adjusting for demographic variables, p-tau181 was the only biomarker to remain significantly associated with APOE ε4 carrier status. DISCUSSION: APOE ε4 genotype modifies plasma p-tau181 concentration in seniors resilient to age-related clinical disease, suggesting that some Super-Seniors may have Alzheimer's disease pathology without progressing to cognitive decline. HIGHLIGHTS: Healthy seniors enable identification of associations that may be masked by disease. Plasma phosphorylated tau (p-tau)181 concentrations associate with apolipoprotein E (APOE) ε4 carriership in healthy seniors. APOE should be accounted for when interpreting p-tau181, regardless of disease.


Assuntos
Apolipoproteína E4 , Biomarcadores , Proteínas tau , Humanos , Feminino , Masculino , Proteínas tau/sangue , Apolipoproteína E4/genética , Idoso de 80 Anos ou mais , Biomarcadores/sangue , Genótipo , Heterozigoto , Doença de Alzheimer/sangue , Doença de Alzheimer/genética , Fosforilação
2.
bioRxiv ; 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38328104

RESUMO

Traumatic brain injuries (TBI) present a major public health challenge, demanding an in-depth understanding of age-specific signs and vulnerabilities. Aging not only significantly influences brain function and plasticity but also elevates the risk of hospitalizations and death following repetitive mild traumatic brain injuries (rmTBIs). In this study, we investigate the impact of age on brain network changes and white matter properties following rmTBI employing a multi-modal approach that integrates resting-state functional magnetic resonance imaging (rsfMRI), graph theory analysis, diffusion tensor imaging (DTI), and Neurite Orientation Dispersion and Density Imaging (NODDI). Utilizing the CHIMERA model, we conducted rmTBIs or sham (control) procedures on young (2.5-3 months old) and aged (22-month-old) male and female mice to model high risk groups. Functional and structural imaging unveiled age-related reductions in communication efficiency between brain regions, while injuries induced opposing effects on the small-world index across age groups, influencing network segregation. Functional connectivity analysis also identified alterations in 79 out of 148 brain regions by age, treatment (sham vs. rmTBI), or their interaction. Injuries exerted pronounced effects on sensory integration areas, including insular and motor cortices. Age-related disruptions in white matter integrity were observed, indicating alterations in various diffusion directions (mean, radial, axial diffusivity, fractional anisotropy) and density neurite properties (dispersion index, intracellular and isotropic volume fraction). Inflammation, assessed through Iba-1 and GFAP markers, correlated with higher dispersion in the optic tract, suggesting a neuroinflammatory response in aged animals. These findings provide a comprehensive understanding of the intricate interplay between age, injuries, and brain connectivity, shedding light on the long-term consequences of rmTBIs.

3.
Clin Chem Lab Med ; 62(4): 698-705, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-37882772

RESUMO

OBJECTIVES: Blood biomarkers have the potential to transform diagnosis and prognosis for multiple neurological indications. Establishing normative data is a critical benchmark in the analytical validation process. Normative data are important in children as little is known about how brain development may impact potential biomarkers. The objective of this study is to generate pediatric reference intervals (RIs) for serum neurofilament light (NfL), an axonal marker, and glial fibrillary acidic protein (GFAP), an astrocytic marker. METHODS: Serum from healthy children and adolescents aged 1 to <19 years were obtained from the Canadian Laboratory Initiative on Pediatric Reference Intervals (CALIPER) cohort. Serum NfL (n=300) and GFAP (n=316) were quantified using Simoa technology, and discrete RI (2.5th and 97.5th percentiles) and continuous RI (5th and 95th percentiles) were generated. RESULTS: While there was no association with sex, there was a statistically significant (p<0.0001) negative association between age and serum NfL (Rho -0.400) and GFAP (Rho -0.749). Two statistically significant age partitions were generated for NfL: age 1 to <10 years (lower, upper limit; 3.13, 20.6 pg/mL) and 10 to <19 years (1.82, 7.44 pg/mL). For GFAP, three statistically significant age partitions were generated: age 1 to <3.5 years (80.4, 601 pg/mL); 3.5 to <11 years (50.7, 224 pg/mL); and 11 to <19 years (26.2, 119 pg/mL). CONCLUSIONS: Taken together with the literature on adults, NfL and GFAP display U-shaped curves with high levels in infants, decreasing levels during childhood, a plateau during adolescence and early adulthood and increasing levels in seniors. These normative data are expected to inform future pediatric studies on the importance of age on neurological blood biomarkers.


Assuntos
Filamentos Intermediários , Soro , Adulto , Adolescente , Humanos , Criança , Proteína Glial Fibrilar Ácida , Prognóstico , Biomarcadores , Proteínas de Neurofilamentos
4.
Mol Neurodegener ; 18(1): 86, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37974180

RESUMO

This narrative review focuses on the role of cholesteryl ester transfer protein (CETP) and peripheral lipoproteins in the vascular contributions to cognitive impairment and dementia (VCID). Humans have a peripheral lipoprotein profile where low-density lipoproteins (LDL) represent the dominant lipoprotein fraction and high-density lipoproteins (HDL) represent a minor lipoprotein fraction. Elevated LDL-cholesterol (LDL-C) levels are well-established to cause cardiovascular disease and several LDL-C-lowering therapies are clinically available to manage this vascular risk factor. The efficacy of LDL-C-lowering therapies to reduce risk of all-cause dementia and AD is now important to address as recent studies demonstrate a role for LDL in Alzheimer's Disease (AD) as well as in all-cause dementia. The LDL:HDL ratio in humans is set mainly by CETP activity, which exchanges cholesteryl esters for triglycerides across lipoprotein fractions to raise LDL and lower HDL as CETP activity increases. Genetic and pharmacological studies support the hypothesis that CETP inhibition reduces cardiovascular risk by lowering LDL, which, by extension, may also lower VCID. Unlike humans, wild-type mice do not express catalytically active CETP and have HDL as their major lipoprotein fraction. As HDL has potent beneficial effects on endothelial cells, the naturally high HDL levels in mice protect them from vascular disorders, likely including VCID. Genetic restoration of CETP expression in mice to generate a more human-like lipid profile may increase the relevance of murine models for VCID studies. The therapeutic potential of existing and emerging LDL-lowering therapies for VCID will be discussed. Figure Legend. Cholesteryl Ester Transfer Protein in Alzheimer's Disease. CETP is mainly produced by the liver, and exchanges cholesteryl esters for triglycerides across lipoprotein fractions to raise circulating LDL and lower HDL as CETP activity increases. Low CETP activity is associated with better cardiovascular health, due to decreased LDL and increased HDL, which may also improve brain health. Although most peripheral lipoproteins cannot enter the brain parenchyma due to the BBB, it is increasingly appreciated that direct access to the vascular endothelium may enable peripheral lipoproteins to have indirect effects on brain health. Thus, lipoproteins may affect the cerebrovasculature from both sides of the BBB. Recent studies show an association between elevated plasma LDL, a well-known cardiovascular risk factor, and a higher risk of AD, and considerable evidence suggests that high HDL levels are associated with reduced CAA and lower neuroinflammation. Considering the potential detrimental role of LDL in AD and the importance of HDL's beneficial effects on endothelial cells, high CETP activity may lead to compromised BBB integrity, increased CAA deposits and greater neuroinflammation. Abbreviations: CETP - cholesteryl transfer ester protein; LDL - low-density lipoproteins; HDL - high-density lipoproteins; BBB - blood-brain barrier; CAA - cerebral amyloid angiopathy, SMC - smooth muscle cells, PVM - perivascular macrophages, RBC - red blood cells.


Assuntos
Doença de Alzheimer , Proteínas de Transferência de Ésteres de Colesterol , Humanos , Camundongos , Animais , Ésteres do Colesterol/metabolismo , LDL-Colesterol , Células Endoteliais/metabolismo , Doenças Neuroinflamatórias , Lipoproteínas/metabolismo , Lipoproteínas HDL/metabolismo , Triglicerídeos
5.
Clin Biochem ; 121-122: 110680, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37884086

RESUMO

INTRODUCTION: In this study, we aimed to create reference intervals (RI) using a large Canadian population-based cohort, for plasma protein biomarkers with potential utility to screen, diagnosis, prognosticate and manage a variety of neurological diseases and disorders. RIs were generated for: the ratio of amyloid beta 42 over 40 (Aß42/40), phosphorylated tau-181 (p-tau-181), neurofilament light (NfL), and glial fibrillary acidic protein (GFAP). METHODS: 900 plasma specimens from male and female participants aged 3-79 years old were obtained from the Statistics Canada Biobank, which holds specimens from the Canadian Health Measures Survey. Analysis of Aß42/40, p-tau-181, NfL and GFAP was performed on the Quanterix Simoa HD-X analyzer using the Neurology 4-plex E and p-tau-181 assays. Discrete RIs were produced according to Clinical Laboratory Standards Institute guidelines (EP28-A3c). Continuous RIs were created using quantile regression. RESULTS: For discrete RIs, significant age partitions were determined for each biomarker. No significant sex partitions were found. The following ranges and age partitions were determined: Aß42/40: 3-<55y = 0.053-0.098, 55-<80y = 0.040-0.090; p-tau-181: 3-<12y = 1.4-5.6 pg/ml, 12-<60y = 0.8-3.1 pg/ml, 60-<80y = 0.9-4.0 pg/ml; NfL: 3-<40y = 2.6-11.3 pg/ml, 40-<60y = 4.6-17.7 pg/ml, 60-<80y = 8.1-47.1 pg/ml; GFAP; 3-<10y = 47.0-226 pg/ml, 10-<60y = 21.2-91.9 pg/ml, 60-<80y = 40.7-228 pg/ml. Continuous RIs produced smooth centile curves across the age range, from which point estimates for each year of age were calculated. CONCLUSIONS: Discrete and continuous RIs for neurological plasma biomarkers will help refine normative cut-offs across the lifespan and improve the precision of interpretating biomarker levels. Continuous RIs are recommended for use in age groups, such as pediatrics and older adults, that experience rapid concentration changes by age.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Humanos , Masculino , Criança , Feminino , Idoso , Pré-Escolar , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Canadá , Proteínas tau , Biomarcadores
6.
JAMA Netw Open ; 6(10): e2339733, 2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37870831

RESUMO

Importance: Advancing research on fluid biomarkers associated with sport-related concussion (SRC) highlights the importance of detecting low concentrations using ultrasensitive platforms. However, common statistical practices may overlook replicate errors and specimen exclusion, emphasizing the need to explore robust modeling approaches that consider all available replicate data for comprehensive understanding of sample variation and statistical inferences. Objective: To evaluate the impact of replicate error and different biostatistical modeling approaches on SRC biomarker interpretation. Design, Setting, and Participants: This cross-sectional study within the Surveillance in High Schools to Reduce the Risk of Concussions and Their Consequences study used data from healthy youth athletes (ages 11-18 years) collected from 3 sites across Canada between September 2019 and November 2021. Data were analyzed from November 2022 to February 2023. Exposures: Demographic variables included age, sex, and self-reported history of previous concussion. Main Outcomes and Measures: Outcomes of interest were preinjury plasma glial fibrillary acidic protein (GFAP), ubiquitin C-terminal hydrolase-L1 (UCH-L1), neurofilament-light (NFL), total tau (t-tau) and phosphorylated-tau-181 (p-tau-181) assayed in duplicate. Bland-Altman analysis determined the 95% limits of agreement (LOAs) for each biomarker. The impact of replicate error was explored using 3 biostatistical modeling approaches assessing the associations of age, sex, and previous concussion on biomarker concentrations: multilevel regression using all available replicate data, single-level regression using the means of replicate data, and single-level regression with replicate means, excluding specimens demonstrating more than 20% coefficient variation (CV). Results: The sample included 149 healthy youth athletes (78 [52%] male; mean [SD] age, 15.74 [1.41] years; 51 participants [34%] reporting ≥1 previous concussions). Wide 95% LOAs were observed for GFAP (-17.74 to 18.20 pg/mL), UCH-L1 (-13.80 to 14.77 pg/mL), and t-tau (65.27% to 150.03%). GFAP and UCH-L1 were significantly associated with sex in multilevel regression (GFAP: effect size, 15.65%; ß = -0.17; 95% CI, -0.30 to -0.04]; P = .02; UCH-L1: effect size, 17.24%; ß = -0.19; 95% CI, -0.36 to -0.02]; P = .03) and single-level regression using the means of replicate data (GFAP: effect size, 15.56%; ß = -0.17; 95% CI, -0.30 to -0.03]; P = .02; UCH-L1: effect size, 18.02%; ß = -0.20; 95% CI, -0.37 to -0.03]; P = .02); however, there was no association for UCH-L1 after excluding specimens demonstrating more than 20% CV. Excluding specimens demonstrating more than 20% CV resulted in decreased differences associated with sex in GFAP (effect size, 12.29%; ß = -0.14; 95% CI, -0.273 to -0.004]; P = .04) and increased sex differences in UCH-L1 (effect size, 23.59%; ß = -0.27; 95% CI, -0.55 to 0.01]; P = .06), with the widest 95% CIs (ie, least precision) found in UCH-L1. Conclusions and Relevance: In this cross-sectional study of healthy youth athletes, varying levels of agreement between SRC biomarker technical replicates suggested that means of measurements may not optimize precision for population values. Multilevel regression modeling demonstrated how incorporating all available biomarker data could capture replicate variation, avoiding challenges associated with means and percentage of CV exclusion thresholds to produce more representative estimates of association.


Assuntos
Concussão Encefálica , Esportes , Adolescente , Humanos , Masculino , Feminino , Estudos Transversais , Ubiquitina Tiolesterase , Concussão Encefálica/diagnóstico , Biomarcadores
7.
Int J Mol Sci ; 24(11)2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37298388

RESUMO

Traumatic brain injury (TBI) is an established risk factor for neurodegenerative diseases. In this study, we used the Closed Head Injury Model of Engineered Rotational Acceleration (CHIMERA) to investigate the effects of a single high-energy TBI in rTg4510 mice, a mouse model of tauopathy. Fifteen male rTg4510 mice (4 mo) were impacted at 4.0 J using interfaced CHIMERA and were compared to sham controls. Immediately after injury, the TBI mice showed significant mortality (7/15; 47%) and a prolonged duration of loss of the righting reflex. At 2 mo post-injury, surviving mice displayed significant microgliosis (Iba1) and axonal injury (Neurosilver). Western blotting indicated a reduced p-GSK-3ß (S9):GSK-3ß ratio in TBI mice, suggesting chronic activation of tau kinase. Although longitudinal analysis of plasma total tau suggested that TBI accelerates the appearance of tau in the circulation, there were no significant differences in brain total or p-tau levels, nor did we observe evidence of enhanced neurodegeneration in TBI mice compared to sham mice. In summary, we showed that a single high-energy head impact induces chronic white matter injury and altered GSK-3ß activity without an apparent change in post-injury tauopathy in rTg4510 mice.


Assuntos
Lesões Encefálicas Traumáticas , Traumatismos Cranianos Fechados , Tauopatias , Camundongos , Masculino , Animais , Glicogênio Sintase Quinase 3 beta/genética , Lesões Encefálicas Traumáticas/genética , Encéfalo/metabolismo , Tauopatias/genética , Modelos Animais de Doenças , Aceleração , Proteínas tau/genética , Proteínas tau/metabolismo
8.
Stroke ; 54(6): e251-e271, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37009740

RESUMO

BACKGROUND: Preservation of brain health has emerged as a leading public health priority for the aging world population. Advances in neurovascular biology have revealed an intricate relationship among brain cells, meninges, and the hematic and lymphatic vasculature (the neurovasculome) that is highly relevant to the maintenance of cognitive function. In this scientific statement, a multidisciplinary team of experts examines these advances, assesses their relevance to brain health and disease, identifies knowledge gaps, and provides future directions. METHODS: Authors with relevant expertise were selected in accordance with the American Heart Association conflict-of-interest management policy. They were assigned topics pertaining to their areas of expertise, reviewed the literature, and summarized the available data. RESULTS: The neurovasculome, composed of extracranial, intracranial, and meningeal vessels, as well as lymphatics and associated cells, subserves critical homeostatic functions vital for brain health. These include delivering O2 and nutrients through blood flow and regulating immune trafficking, as well as clearing pathogenic proteins through perivascular spaces and dural lymphatics. Single-cell omics technologies have unveiled an unprecedented molecular heterogeneity in the cellular components of the neurovasculome and have identified novel reciprocal interactions with brain cells. The evidence suggests a previously unappreciated diversity of the pathogenic mechanisms by which disruption of the neurovasculome contributes to cognitive dysfunction in neurovascular and neurodegenerative diseases, providing new opportunities for the prevention, recognition, and treatment of these conditions. CONCLUSIONS: These advances shed new light on the symbiotic relationship between the brain and its vessels and promise to provide new diagnostic and therapeutic approaches for brain disorders associated with cognitive dysfunction.


Assuntos
Disfunção Cognitiva , Acidente Vascular Cerebral , Estados Unidos , Humanos , American Heart Association , Acidente Vascular Cerebral/terapia , Encéfalo , Cognição
9.
Neurology ; 100(12): e1221-e1233, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36599698

RESUMO

BACKGROUND AND OBJECTIVES: Traumatic spinal cord injury (SCI) is highly heterogeneous, and tools to better delineate pathophysiology and recovery are needed. Our objective was to profile the response of 2 biomarkers, neurofilament light (NF-L) and glial fibrillary acidic protein (GFAP), in the serum and CSF of patients with acute SCI to evaluate their ability to objectively characterize injury severity and predict neurologic recovery. METHODS: Blood and CSF samples were obtained from prospectively enrolled patients with acute SCI through days 1-4 postinjury, and the concentration of NF-L and GFAP was quantified using Simoa technology. Neurologic assessments defined the ASIA Impairment Scale (AIS) grade and motor score (MS) at presentation and 6 months postinjury. RESULTS: One hundred eighteen patients with acute SCI (78 AIS A, 20 AIS B, and 20 AIS C) were enrolled, with 113 (96%) completing 6-month follow-up. NF-L and GFAP levels were strongly associated between paired serum and CSF specimens, were both increased with injury severity, and distinguished among baseline AIS grades. Serum NF-L and GFAP were significantly (p = 0.02 to <0.0001) higher in AIS A patients who did not improve at 6 months, predicting AIS grade conversion with a sensitivity and specificity (95% CI) of 76% (61, 87) and 77% (55, 92) using NF-L and 72% (57, 84) and 77% (55, 92) using GFAP at 72 hours, respectively. Independent of clinical baseline assessment, a serum NF-L threshold of 170 pg/mL at 72 hours predicted those patients who would be classified as motor complete (AIS A/B) compared with motor incomplete (AIS C/D) at 6 months with a sensitivity of 87% (76, 94) and specificity of 84% (69, 94); a serum GFAP threshold of 13,180 pg/mL at 72 hours yielded a sensitivity of 90% (80, 96) and specificity of 84% (69, 94). DISCUSSION: The potential for NF-L and GFAP to classify injury severity and predict outcome after acute SCI will be useful for patient stratification and prognostication in clinical trials and inform communication of prognosis. CLASSIFICATION OF EVIDENCE: This study provides Class I evidence that higher serum NF-L and GFAP are associated with worse neurological outcome after acute SCI. TRIAL REGISTRATION INFORMATION: Registered on ClinicalTrials.gov: NCT00135278 (March 2006) and NCT01279811 (January 2012).


Assuntos
Filamentos Intermediários , Traumatismos da Medula Espinal , Humanos , Proteína Glial Fibrilar Ácida , Prognóstico , Biomarcadores
10.
Front Immunol ; 13: 1010216, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36451808

RESUMO

The COVID-19 pandemic continues to challenge the capacities of hospital ICUs which currently lack the ability to identify prospectively those patients who may require extended management. In this study of 90 ICU COVID-19 patients, we evaluated serum levels of four cytokines (IL-1ß, IL-6, IL-10 and TNFα) as well as standard clinical and laboratory measurements. On 42 of these patients (binned into Initial and Replication Cohorts), we further performed CyTOF-based deep immunophenotyping of peripheral blood mononuclear cells with a panel of 38 antibodies. All measurements and patient samples were taken at time of ICU admission and retrospectively linked to patient clinical outcomes through statistical approaches. These analyses resulted in the definition of a new measure of patient clinical outcome: patients who will recover after short ICU stays (< 6 days) and those who will subsequently die or recover after long ICU stays (≥6 days). Based on these clinical outcome categories, we identified blood prognostic biomarkers that, at time of ICU admission, prospectively distinguish, with 91% sensitivity and 91% specificity (positive likelihood ratio 10.1), patients in the two clinical outcome groups. This is achieved through a tiered evaluation of serum IL-10 and targeted immunophenotyping of monocyte subsets, specifically, CD11clow classical monocytes. Both immune biomarkers were consistently elevated ( ≥15 pg/ml and ≥2.7 x107/L for serum IL-10 and CD11clow classical monocytes, respectively) in those patients who will subsequently die or recover after long ICU stays. This highly sensitive and specific prognostic test could prove useful in guiding clinical resource allocation.


Assuntos
COVID-19 , Humanos , Interleucina-10 , Leucócitos Mononucleares , Pandemias , Prognóstico , Estudos Retrospectivos , Antígeno CD11c , Unidades de Terapia Intensiva
11.
Micromachines (Basel) ; 13(10)2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36295926

RESUMO

The PDMS-based microfluidic organ-on-chip platform represents an exciting paradigm that has enjoyed a rapid rise in popularity and adoption. A particularly promising element of this platform is its amenability to rapid manufacturing strategies, which can enable quick adaptations through iterative prototyping. These strategies, however, come with challenges; fluid flow, for example, a core principle of organs-on-chip and the physiology they aim to model, necessitates robust, leak-free channels for potentially long (multi-week) culture durations. In this report, we describe microfluidic chip fabrication methods and strategies that are aimed at overcoming these difficulties; we employ a subset of these strategies to a blood-brain-barrier-on-chip, with others applied to a small-airway-on-chip. Design approaches are detailed with considerations presented for readers. Results pertaining to fabrication parameters we aimed to improve (e.g., the thickness uniformity of molded PDMS), as well as illustrative results pertaining to the establishment of cell cultures using these methods will also be presented.

12.
Lancet Reg Health Am ; 11: 100228, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35345649

RESUMO

Background: Interleukin-6 inhibitors reduce mortality in severe COVID-19. British Columbia began using tocilizumab 8 mg/kg (maximum 800 mg) in January 2021 in critically ill patients with COVID-19, but due to drug shortages, decreased dosing to 400 mg IV fixed dose in April 2021. The aims of this study were twofold: to compare physiological responses and clinical outcomes of these two strategies, and examine the cost-effectiveness of treating all patients with 400 mg versus half the patients with 8 mg/kg and the other half without tocilizumab. Methods: This was a single-centre, before-after cohort study of critically ill COVID-19 patients treated with tocilizumab, and a control cohort treated with dexamethasone only. Physiological responses and clinical outcomes were compared between patients receiving both doses of tocilizumab and those receiving dexamethasone only. We built a decision tree model to examine cost-effectiveness. Findings: 152 patients were included; 40 received tocilizumab 8 mg/kg, 59 received 400 mg and 53 received dexamethasone only. Median CRP fell from 103 mg/L to 5.2 mg/L, 96 mg/L to 6.8 mg/L and from 81.3 mg/L to 48 mg/L in the 8 mg/kg, 400 mg tocilizumab, and dexamethasone only groups, respectively. 28-day mortality was 5% (n=2) vs 8% (n=5) vs 13% (n=7), with no significant difference in all pair-wise comparison. At an assumed willingness-to-pay threshold of $50,000 Canadian per life-year, utilizing 400 mg for all patients rather than 8 mg/kg for half the patients is cost-effective in 51.6% of 10,000 Monte Carlo simulations. Interpretation: Both doses of tocilizumab demonstrated comparable reduction of inflammation with similar 28-day mortality. Without consideration of equity, the net monetary benefits of providing 400 mg tocilizumab to all patients are comparable to 8 mg/kg to half the patients. In the context of ongoing drug shortages, fixed-dose 400 mg tocilizumab may be a practical, feasible and economical option. Funding: This work was supported by a gift donation from Hsu & Taylor Family to the VGH Foundation, and the Yale Bernard G. Forget Scholarship.

13.
JAMA Neurol ; 79(4): 390-398, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35226054

RESUMO

IMPORTANCE: Brain injury biomarkers released into circulation from the injured neurovascular unit are important prognostic tools in patients with cardiac arrest who develop hypoxic ischemic brain injury (HIBI) after return of spontaneous circulation (ROSC). OBJECTIVE: To assess the neuroprognostic utility of bloodborne brain injury biomarkers in patients with cardiac arrest with HIBI. DATA SOURCES: Studies in electronic databases from inception to September 15, 2021. These databases included MEDLINE, Embase, Evidence-Based Medicine Reviews, CINAHL, Cochrane Database of Systematic Reviews, and the World Health Organization Global Health Library. STUDY SELECTION: Articles included in this systmatic review and meta-analysis were independently assessed by 2 reviewers. We included studies that investigated neuron-specific enolase, S100 calcium-binding protein ß, glial fibrillary acidic protein, neurofilament light, tau, or ubiquitin carboxyl hydrolase L1 in patients with cardiac arrest aged 18 years and older for neurologic prognostication. We excluded studies that did not (1) dichotomize neurologic outcome as favorable vs unfavorable, (2) specify the timing of blood sampling or outcome determination, or (3) report diagnostic test accuracy or biomarker concentration. DATA EXTRACTION AND SYNTHESIS: Data on the study design, inclusion and exclusion criteria, brain biomarkers levels, diagnostic test accuracy, and neurologic outcome were recorded. This study was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guideline. MAIN OUTCOMES AND MEASURES: Summary receiver operating characteristic curve analysis was used to calculate the area under the curve, sensitivity, specificity, and optimal thresholds for each biomarker. Risk of bias and concerns of applicability were assessed with the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool. RESULTS: We identified 2953 studies, of which 86 studies with 10 567 patients (7777 men [73.6] and 2790 women [26.4]; pooled mean [SD] age, 62.8 [10.2] years) were included. Biomarker analysis at 48 hours after ROSC demonstrated that neurofilament light had the highest predictive value for unfavorable neurologic outcome, with an area under the curve of 0.92 (95% CI, 0.84-0.97). Subgroup analyses of patients treated with targeted temperature management and those who specifically had an out-of-hospital cardiac arrest showed similar results (targeted temperature management, 0.92 [95% CI, 0.86-0.95] and out-of-hospital cardiac arrest, 0.93 [95% CI, 0.86-0.97]). CONCLUSIONS AND RELEVANCE: Neurofilament light, which reflects white matter damage and axonal injury, yielded the highest accuracy in predicting neurologic outcome in patients with HIBI at 48 hours after ROSC. TRIAL REGISTRATION: PROSPERO Identifier: CRD42020157366.


Assuntos
Lesões Encefálicas , Hipotermia Induzida , Hipóxia-Isquemia Encefálica , Parada Cardíaca Extra-Hospitalar , Biomarcadores , Encéfalo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico
14.
Med Microbiol Immunol ; 211(1): 37-48, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35034207

RESUMO

Mechanisms underlying the SARS-CoV-2-triggered hyperacute thrombo-inflammatory response that causes multi-organ damage in coronavirus disease 2019 (COVID-19) are poorly understood. Several lines of evidence implicate overactivation of complement. To delineate the involvement of complement in COVID-19, we prospectively studied 25 ICU-hospitalized patients for up to 21 days. Complement biomarkers in patient sera and healthy controls were quantified by enzyme-linked immunosorbent assays. Correlations with respiratory function and mortality were analyzed. Activation of complement via the classical/lectin pathways was variably increased. Strikingly, all patients had increased activation of the alternative pathway (AP) with elevated levels of activation fragments, Ba and Bb. This was associated with a reduction of the AP negative regulator, factor (F) H. Correspondingly, terminal pathway biomarkers of complement activation, C5a and sC5b-9, were significantly elevated in all COVID-19 patient sera. C5a and AP constituents Ba and Bb, were significantly associated with hypoxemia. Ba and FD at the time of ICU admission were strong independent predictors of mortality in the following 30 days. Levels of all complement activation markers were sustained throughout the patients' ICU stays, contrasting with the varying serum levels of IL-6, C-reactive protein, and ferritin. Severely ill COVID-19 patients have increased and persistent activation of complement, mediated strongly via the AP. Complement activation biomarkers may be valuable measures of severity of lung disease and the risk of mortality. Large-scale studies will reveal the relevance of these findings to thrombo-inflammation in acute and post-acute COVID-19.


Assuntos
COVID-19 , Biomarcadores , Ativação do Complemento , Mortalidade Hospitalar , Humanos , Hipóxia , SARS-CoV-2
16.
Cell Rep Med ; 2(5): 100269, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33899032

RESUMO

Data suggest that interleukin (IL)-6 blockade could reduce mortality in severe COVID-19, yet IL-6 is only modestly elevated in most patients. Chen et al. describe the role of soluble interleukin-6 receptor (sIL-6R) in IL-6 trans-signaling and how understanding the IL-6:sIL-6R axis might help define and treat COVID-19 cytokine storm syndrome.


Assuntos
COVID-19/patologia , Síndrome da Liberação de Citocina/diagnóstico , Receptores de Interleucina-6/análise , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacologia , COVID-19/complicações , COVID-19/virologia , Síndrome da Liberação de Citocina/etiologia , Humanos , Interleucina-6/análise , Interleucina-6/imunologia , SARS-CoV-2/isolamento & purificação , Transdução de Sinais/efeitos dos fármacos
17.
Micromachines (Basel) ; 12(4)2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33921018

RESUMO

In recent years, the need for sophisticated human in vitro models for integrative biology has motivated the development of organ-on-a-chip platforms. Organ-on-a-chip devices are engineered to mimic the mechanical, biochemical and physiological properties of human organs; however, there are many important considerations when selecting or designing an appropriate device for investigating a specific scientific question. Building microfluidic Brain-on-a-Chip (BoC) models from the ground-up will allow for research questions to be answered more thoroughly in the brain research field, but the design of these devices requires several choices to be made throughout the design development phase. These considerations include the cell types, extracellular matrix (ECM) material(s), and perfusion/flow considerations. Choices made early in the design cycle will dictate the limitations of the device and influence the end-point results such as the permeability of the endothelial cell monolayer, and the expression of cell type-specific markers. To better understand why the engineering aspects of a microfluidic BoC need to be influenced by the desired biological environment, recent progress in microfluidic BoC technology is compared. This review focuses on perfusable blood-brain barrier (BBB) and neurovascular unit (NVU) models with discussions about the chip architecture, the ECM used, and how they relate to the in vivo human brain. With increased knowledge on how to make informed choices when selecting or designing BoC models, the scientific community will benefit from shorter development phases and platforms curated for their application.

18.
Alzheimers Res Ther ; 13(1): 58, 2021 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-33678186

RESUMO

BACKGROUND: Glial fibrillary acidic protein (GFAP) has emerged as a promising fluid biomarker for several neurological indications including traumatic brain injury (TBI), a leading cause of death and disability worldwide. In humans, serum or plasma GFAP levels can predict brain abnormalities including hemorrhage on computed tomography (CT) scans and magnetic resonance imaging (MRI). However, assays to quantify plasma or serum GFAP in preclinical models are not yet available. METHODS: We developed and validated a novel sensitive GFAP immunoassay assay for mouse plasma on the Meso Scale Discovery immunoassay platform and validated assay performance for robustness, precision, limits of quantification, dilutional linearity, parallelism, recovery, stability, selectivity, and pre-analytical factors. To provide proof-of-concept data for this assay as a translational research tool for TBI and Alzheimer's disease (AD), plasma GFAP was measured in mice exposed to TBI using the Closed Head Impact Model of Engineered Rotational Acceleration (CHIMERA) model and in APP/PS1 mice with normal or reduced levels of plasma high-density lipoprotein (HDL). RESULTS: We performed a partial validation of our novel assay and found its performance by the parameters studied was similar to assays used to quantify human GFAP in clinical neurotrauma blood specimens and to assays used to measure murine GFAP in tissues. Specifically, we demonstrated an intra-assay CV of 5.0%, an inter-assay CV of 7.2%, a lower limit of detection (LLOD) of 9.0 pg/mL, a lower limit of quantification (LLOQ) of 24.8 pg/mL, an upper limit of quantification (ULOQ) of at least 16,533.9 pg/mL, dilution linearity of calibrators from 20 to 200,000 pg/mL with 90-123% recovery, dilution linearity of plasma specimens up to 32-fold with 96-112% recovery, spike recovery of 67-100%, and excellent analyte stability in specimens exposed to up to 7 freeze-thaw cycles, 168 h at 4 °C, 24 h at room temperature (RT), or 30 days at - 20 °C. We also observed elevated plasma GFAP in mice 6 h after TBI and in aged APP/PS1 mice with plasma HDL deficiency. This assay also detects GFAP in serum. CONCLUSIONS: This novel assay is a valuable translational tool that may help to provide insights into the mechanistic pathophysiology of TBI and AD.


Assuntos
Lesões Encefálicas Traumáticas , Animais , Biomarcadores , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Proteína Glial Fibrilar Ácida , Imunoensaio , Camundongos , Tomografia Computadorizada por Raios X
20.
Blood Rev ; 45: 100707, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32425294

RESUMO

A subset of patients with severe COVID-19 develop profound inflammation and multi-organ dysfunction consistent with a "Cytokine Storm Syndrome" (CSS). In this review we compare the clinical features, diagnosis, and pathogenesis of COVID-CSS with other hematological CSS, namely secondary hemophagocytic lymphohistiocytosis (sHLH), idiopathic multicentric Castleman disease (iMCD), and CAR-T cell therapy associated Cytokine Release Syndrome (CRS). Novel therapeutics targeting cytokines or inhibiting cell signaling pathways have now become the mainstay of treatment in these CSS. We review the evidence for cytokine blockade and attenuation in these known CSS as well as the emerging literature and clinical trials pertaining to COVID-CSS. Established markers of inflammation as well as cytokine levels are compared and contrasted between these four entities in order to establish a foundation for future diagnostic criteria of COVID-CSS.


Assuntos
COVID-19/imunologia , Hiperplasia do Linfonodo Gigante/imunologia , Síndrome da Liberação de Citocina/imunologia , Fatores Imunológicos/uso terapêutico , Linfo-Histiocitose Hemofagocítica/imunologia , SARS-CoV-2/patogenicidade , Corticosteroides/uso terapêutico , Anticorpos Monoclonais/uso terapêutico , Biomarcadores/sangue , Proteína C-Reativa/imunologia , Proteína C-Reativa/metabolismo , COVID-19/patologia , COVID-19/virologia , Hiperplasia do Linfonodo Gigante/tratamento farmacológico , Hiperplasia do Linfonodo Gigante/patologia , Ensaios Clínicos como Assunto , Síndrome da Liberação de Citocina/tratamento farmacológico , Síndrome da Liberação de Citocina/patologia , Síndrome da Liberação de Citocina/virologia , Ferritinas/sangue , Ferritinas/imunologia , Regulação da Expressão Gênica , Humanos , Imunoterapia Adotiva/efeitos adversos , Interleucina-1/antagonistas & inibidores , Interleucina-1/sangue , Interleucina-1/imunologia , Interleucina-6/antagonistas & inibidores , Interleucina-6/sangue , Interleucina-6/imunologia , Linfo-Histiocitose Hemofagocítica/tratamento farmacológico , Linfo-Histiocitose Hemofagocítica/patologia , Transdução de Sinais , Tratamento Farmacológico da COVID-19
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...