Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur Respir J ; 58(4)2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33766947

RESUMO

BACKGROUND: Interleukin (IL)-6 trans-signalling (IL-6TS) is emerging as a pathogenic mechanism in chronic respiratory diseases; however, the drivers of IL-6TS in the airways and the phenotypic characteristic of patients with increased IL-6TS pathway activation remain poorly understood. OBJECTIVE: Our aim was to identify and characterise COPD patients with increased airway IL-6TS and to elucidate the biological drivers of IL-6TS pathway activation. METHODS: We used an IL-6TS-specific sputum biomarker profile (soluble IL-6 receptor (sIL-6R), IL-6, IL-1ß, IL-8, macrophage inflammatory protein-1ß) to stratify sputum data from patients with COPD (n=74; Biomarkers to Target Antibiotic and Systemic Corticosteroid Therapy in COPD Exacerbation (BEAT-COPD)) by hierarchical clustering. The IL-6TS signature was related to clinical characteristics and sputum microbiome profiles. The induction of neutrophil extracellular trap formation (NETosis) and IL-6TS by Haemophilus influenzae were studied in human neutrophils. RESULTS: Hierarchical clustering revealed an IL-6TS-high subset (n=24) of COPD patients, who shared phenotypic traits with an IL-6TS-high subset previously identified in asthma. The subset was characterised by increased sputum cell counts (p=0.0001), persistent sputum neutrophilia (p=0.0004), reduced quality of life (Chronic Respiratory Questionnaire total score; p=0.008), and increased levels of pro-inflammatory mediators and matrix metalloproteinases in sputum. IL-6TS-high COPD patients showed an increase in Proteobacteria, with Haemophilus as the dominating genus. NETosis induced by H. influenzae was identified as a potential mechanism for increased sIL-6R levels. This was supported by a significant positive correlation between sIL-6R and NETosis markers in bronchoalveolar lavage fluid from COPD patients. CONCLUSION: IL-6TS pathway activation due to chronic colonisation with Haemophilus may be an important disease driver in a subset of COPD patients.


Assuntos
Armadilhas Extracelulares , Infecções por Haemophilus , Doença Pulmonar Obstrutiva Crônica , Infecções por Haemophilus/complicações , Humanos , Interleucina-6 , Qualidade de Vida , Escarro
2.
J Biol Chem ; 295(15): 5136-5151, 2020 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-32132173

RESUMO

Increased plasma concentrations of lipoprotein(a) (Lp(a)) are associated with an increased risk for cardiovascular disease. Lp(a) is composed of apolipoprotein(a) (apo(a)) covalently bound to apolipoprotein B of low-density lipoprotein (LDL). Many of apo(a)'s potential pathological properties, such as inhibition of plasmin generation, have been attributed to its main structural domains, the kringles, and have been proposed to be mediated by their lysine-binding sites. However, available small-molecule inhibitors, such as lysine analogs, bind unselectively to kringle domains and are therefore unsuitable for functional characterization of specific kringle domains. Here, we discovered small molecules that specifically bind to the apo(a) kringle domains KIV-7, KIV-10, and KV. Chemical synthesis yielded compound AZ-05, which bound to KIV-10 with a Kd of 0.8 µm and exhibited more than 100-fold selectivity for KIV-10, compared with the other kringle domains tested, including plasminogen kringle 1. To better understand and further improve ligand selectivity, we determined the crystal structures of KIV-7, KIV-10, and KV in complex with small-molecule ligands at 1.6-2.1 Å resolutions. Furthermore, we used these small molecules as chemical probes to characterize the roles of the different apo(a) kringle domains in in vitro assays. These assays revealed the assembly of Lp(a) from apo(a) and LDL, as well as potential pathophysiological mechanisms of Lp(a), including (i) binding to fibrin, (ii) stimulation of smooth-muscle cell proliferation, and (iii) stimulation of LDL uptake into differentiated monocytes. Our results indicate that a small-molecule inhibitor targeting the lysine-binding site of KIV-10 can combat the pathophysiological effects of Lp(a).


Assuntos
Apolipoproteínas A/antagonistas & inibidores , Apolipoproteínas A/metabolismo , Fibrina/metabolismo , Kringles/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Sequência de Aminoácidos , Ensaios de Triagem em Larga Escala , Humanos , Ligantes , Modelos Moleculares , Ligação Proteica , Domínios Proteicos , Homologia de Sequência
3.
Bioorg Med Chem Lett ; 30(4): 126953, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31932225

RESUMO

GPR81 is a novel drug target that is implicated in the control of glucose and lipid metabolism. The lack of potent GPR81 modulators suitable for in vivo studies has limited the pharmacological characterization of this lactate sensing receptor. We performed a high throughput screen (HTS) and identified a GPR81 agonist chemical series containing a central acyl urea scaffold linker. During SAR exploration two additional new series were evolved, one containing cyclic acyl urea bioisosteres and another a central amide bond. These three series provide different selectivity and physicochemical properties suitable for in-vivo studies.


Assuntos
Receptores Acoplados a Proteínas G/agonistas , Ureia/análogos & derivados , Amidas/química , Amidas/metabolismo , Ensaios de Triagem em Larga Escala , Humanos , Conformação Molecular , Ligação Proteica , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Grelina/agonistas , Receptores de Grelina/metabolismo , Relação Estrutura-Atividade , Ureia/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...