Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Knee ; 47: 1-12, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38171206

RESUMO

BACKGROUND: We investigated the relationship between the backside deformation of polyethylene (PE) tibial inserts and aseptic loosening of the Option stemmed tibial tray used with Zimmer NexGen posterior-stabilised (PS) devices. We hypothesized that explanted inserts used in PS designs would exhibit greater extents of PE backside deformation than those used in equivalent cruciate retaining (CR) designs and that PE inserts retrieved from total knee arthroplasties (TKAs) revised for aseptic tibial tray loosening would exhibit greater extents of backside deformation than TKAs revised for other reasons. METHODS: A total of 73 explanted fixed-bearing TKAs (42 CR and 31 PS) were examined. PE components underwent geometric examination with a coordinate measuring machine using validated techniques. Multiple regression modelling was used to identify variables associated with revision secondary to aseptic loosing and to determine factors associated with increased PE backside deformation. RESULTS: PE inserts retrieved from TKAs with aseptic loosening had significantly greater backside deformation than those retrieved from TKAs revised for other reasons (p < 0.001). Greater PE backside deformation was significantly associated with larger tray/insert clearance heights (p < 0.001), thinner inserts (p < 0.001) and PS TKAs (p = 0.001). CONCLUSION: PE backside deformation was significantly greater in the PS TKAs. This may provide one explanation for the increased rate of aseptic loosening reported with the Option tibial tray used with the Legacy Posterior Stabilised (LPS) system.


Assuntos
Artroplastia do Joelho , Prótese do Joelho , Polietileno , Desenho de Prótese , Falha de Prótese , Humanos , Artroplastia do Joelho/instrumentação , Feminino , Idoso , Masculino , Reoperação , Pessoa de Meia-Idade , Tíbia/cirurgia , Idoso de 80 Anos ou mais
2.
Appl Opt ; 62(7): B79-B86, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37132889

RESUMO

Based on pulsed DC sputter deposition of hydrogenated carbon, an absorber optical coating with maximized broadband infrared absorptance is reported. Enhanced broadband (2.5-20 µm) infrared absorptance (>90%) with reduced infrared reflection is achieved by combining a low-absorptance antireflective (hydrogenated carbon) overcoat with a broadband-absorptance carbon underlayer (nonhydrogenated). The infrared optical absorptance of sputter deposited carbon with incorporated hydrogen is reduced. As such, hydrogen flow optimization to minimize reflection loss, maximize broadband absorptance, and achieve stress balance is described. Application to complementary metal-oxide-semiconductor (CMOS) produced microelectromechanical systems (MEMS) thermopile device wafers is described. A 220% increase in thermopile output voltage is demonstrated, in agreement with modeled prediction.

3.
FEBS J ; 290(15): 3812-3827, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37004154

RESUMO

Glycosylation is the most prevalent protein post-translational modification, with a quarter of glycosylated proteins having enzymatic properties. Yet, the full impact of glycosylation on the protein structure-function relationship, especially in enzymes, is still limited. Here, we show that glycosylation rigidifies the important commercial enzyme horseradish peroxidase (HRP), which in turn increases its turnover and stability. Circular dichroism spectroscopy revealed that glycosylation increased holo-HRP's thermal stability and promoted significant helical structure in the absence of haem (apo-HRP). Glycosylation also resulted in a 10-fold increase in enzymatic turnover towards o-phenylenediamine dihydrochloride when compared to its nonglycosylated form. Utilising a naturally occurring site-specific probe of active site flexibility (Trp117) in combination with red-edge excitation shift fluorescence spectroscopy, we found that glycosylation significantly rigidified the enzyme. In silico simulations confirmed that glycosylation largely decreased protein backbone flexibility, especially in regions close to the active site and the substrate access channel. Thus, our data show that glycosylation does not just have a passive effect on HRP stability but can exert long-range effects that mediate the 'native' enzyme's activity and stability through changes in inherent dynamics.


Assuntos
Processamento de Proteína Pós-Traducional , Estabilidade Enzimática , Glicosilação , Domínio Catalítico , Espectrometria de Fluorescência
4.
Biomed Phys Eng Express ; 9(2)2023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-36645907

RESUMO

We propose a technique for metal artefact reduction in digital tomosynthesis reconstruction. Although the problem was addressed earlier in the literature, we suggest another approach, which is, in our opinion, simpler, and easier to implement. It is a two-stage algorithm. At the first stage, attenuation images are segmented by decomposing their intensity distributions into gaussian-like components. Statistical information contained in each component is used for pixel classification. Components corresponding to metallic objects are identified, and a pixel threshold value separating regions occupied by metal objects from the rest of the image is found. Based on this value, at the second stage, a smooth mapping of image intensity is applied. This makes dense regions transparent, resulting in the artefact reduction in reconstruction. The methodology is demonstrated by several examples.


Assuntos
Artefatos , Tomografia Computadorizada por Raios X , Tomografia Computadorizada por Raios X/métodos , Radiografia , Algoritmos , Metais
5.
Water Res ; 217: 118415, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35430467

RESUMO

Wastewater treatment plants have been highlighted as a potential hotspot for the development and spread of antibiotic resistance. Although antibiotic resistant bacteria in wastewater present a public health threat, it is also possible that these bacteria play an important role in the bioremediation through the metabolism of antibiotics before they reach the wider environment. Here we address this possibility with a particular emphasis on stereochemistry using a combination of microbiology and analytical chemistry tools including the use of supercritical-fluid chromatography coupled with mass spectrometry for chiral analysis and high-resolution mass spectrometry to investigate metabolites. Due to the complexities around chiral analysis the antibiotic chloramphenicol was used as a proof of concept to demonstrate stereoselective metabolism due to its relatively simple chemical structure and availability over the counter in the U.K. The results presented here demonstrate the chloramphenicol can be stereoselectively transformed by the chloramphenicol acetyltransferase enzyme with the orientation around the first stereocentre being key for this process, meaning that accumulation of two isomers may occur within the environment with potential impacts on ecotoxicity and emergence of bacterial antibiotic resistance within the environment.


Assuntos
Cloranfenicol , Águas Residuárias , Antibacterianos/análise , Antibacterianos/farmacologia , Bactérias , Farmacorresistência Bacteriana , Medição de Risco , Águas Residuárias/microbiologia
6.
Open Biol ; 11(12): 210182, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34847772

RESUMO

Here we determined the structure of a cold active family IV esterase (EstN7) cloned from Bacillus cohnii strain N1. EstN7 is a dimer with a classical α/ß hydrolase fold. It has an acidic surface that is thought to play a role in cold-adaption by retaining solvation under changed water solvent entropy at lower temperatures. The conformation of the functionally important cap region is significantly different to EstN7's closest relatives, forming a bridge-like structure with reduced helical content providing greater access to the active site through more than one substrate access tunnel. However, dynamics do not appear to play a major role in cold adaption. Molecular dynamics at different temperatures, rigidity analysis, normal mode analysis and geometric simulations of motion confirm the flexibility of the cap region but suggest that the rest of the protein is largely rigid. Rigidity analysis indicates the distribution of hydrophobic tethers is appropriate to colder conditions, where the hydrophobic effect is weaker than in mesophilic conditions due to reduced water entropy. Thus, it is likely that increased substrate accessibility and tolerance to changes in water entropy are important for of EstN7's cold adaptation rather than changes in dynamics.


Assuntos
Bacillus/enzimologia , Esterases/química , Bacillus/química , Proteínas de Bactérias/química , Domínio Catalítico , Temperatura Baixa , Cristalografia por Raios X , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Simulação de Dinâmica Molecular , Conformação Proteica , Termodinâmica
7.
Biomed Phys Eng Express ; 8(1)2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34757950

RESUMO

3D imaging modalities such as computed tomography and digital tomosynthesis typically scan the patient from different angles with a lengthy mechanical movement of a single x-ray tube. Therefore, millions of 3D scans per year require expensive mechanisms to support a heavy x-ray source and have to compensate for machine vibrations and patient movements. However, recent developments in cold-cathode field emission technology allow the creation of compact, stationary arrays of emitters. Adaptix Ltd has developed a novel, low-cost, square array of such emitters and demonstrated 3D digital tomosynthesis of human extremities and small animals. The use of cold-cathode field emitters also makes the system compact and lightweight. This paper presents Monte Carlo simulations of a concept upgrade of the Adaptix system from the current 60 kVp to 90 kVp and 120 kVp which are better suited for chest imaging. Between 90 kVp and 120 kVp, 3D image quality appears insensitive to voltage and at 90 kVp the photon yield is reduced by 40%-50% while effective dose declines by 14%. A square array of emitters can adequately illuminate a subject for tomosynthesis from a shorter source-to-image distance, thereby reducing the required input power, and offsetting the 28%-50% more input power that is required for operation at 90 kVp. This modelling suggests that lightweight, stationary cold-cathode x-ray source arrays could be used for chest tomosynthesis at a lower voltage, with less dose and without sacrificing image quality. This will reduce weight, size and cost, enabling 3D imaging to be brought to the bedside.


Assuntos
Imageamento Tridimensional , Tomografia Computadorizada por Raios X , Humanos , Método de Monte Carlo , Imagens de Fantasmas , Tomografia Computadorizada por Raios X/métodos , Raios X
8.
Bone Joint J ; 103-B(12): 1791-1801, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34474593

RESUMO

AIMS: The aim of this study was to investigate whether wear and backside deformation of polyethylene (PE) tibial inserts may influence the cement cover of tibial trays of explanted total knee arthroplasties (TKAs). METHODS: At our retrieval centre, we measured changes in the wear and deformation of PE inserts using coordinate measuring machines and light microscopy. The amount of cement cover on the backside of tibial trays was quantified as a percentage of the total surface. The study involved data from the explanted fixed-bearing components of four widely used contemporary designs of TKA (Attune, NexGen, Press Fit Condylar (PFC), and Triathlon), revised for any indication, and we compared them with components that used previous generations of PE. Regression modelling was used to identify variables related to the amount of cement cover on the retrieved trays. RESULTS: A total of 114 explanted fixed-bearing TKAs were examined. This included 76 used with contemporary PE inserts which were compared with 15 used with older generation PEs. The Attune and NexGen (central locking) trays were found to have significantly less cement cover than Triathlon and PFC trays (peripheral locking group) (p = 0.001). The median planicity values of the PE inserts used with central locking trays were significantly greater than of those with peripheral locking inserts (205 vs 85 microns; p < 0.001). Attune and NexGen inserts had a characteristic pattern of backside deformation, with the outer edges of the PE deviating inferiorly, leaving the PE margins as the primary areas of articulation. CONCLUSION: Explanted TKAs with central locking mechanisms were significantly more likely to debond from the cement mantle. The PE inserts of these designs showed characteristic patterns of deformation, which appeared to relate to the manufacturing process and may be exacerbated in vivo. This pattern of deformation was associated with PE wear occurring at the outer edges of the articulation, potentially increasing the frictional torque generated at this interface. Cite this article: Bone Joint J 2021;103-B(12):1791-1801.


Assuntos
Artroplastia do Joelho/instrumentação , Cimentos Ósseos , Prótese do Joelho , Polietileno , Desenho de Prótese , Falha de Prótese/etiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Remoção de Dispositivo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Análise de Regressão
9.
J Soc Psychol ; 161(6): 753-778, 2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34392801

RESUMO

In a 2003 study, we examined five antecedents of school shootings - a history of rejection, acute rejection experience, history of psychological problems, fascination with death or violence, and fascination with guns. In three studies, the current project examined the role of these factors in 57 K-12 shootings, 24 college/university shootings, and 77 mass shootings that occurred since the original study. Over half of all shooters had a history of psychological problems. More K-12 shooters than college or mass shooters displayed a history of rejection. However, more mass than school shooters had experienced an acute rejection, such as a workplace firing. The characteristics identified in the original study appeared as common antecedent conditions of not only K-12 shootings but college/university and mass shootings as well. These results identify problems that can be addressed to minimize the occurrence of school and mass shootings.


Assuntos
Armas de Fogo , Ferimentos por Arma de Fogo , Humanos , Instituições Acadêmicas , Universidades , Violência
10.
J Chem Phys ; 154(24): 244703, 2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34241364

RESUMO

Cancer remains hard to treat, partially due to the non-specificity of chemotherapeutics. Metal-organic frameworks (MOFs) are promising carriers for targeted chemotherapy, yet, to date, there have been few detailed studies to systematically enhance drug loading while maintaining controlled release. In this work, we investigate which molecular simulation methods best capture the experimental uptake and release of cisplatin from UiO-66 and UiO-66(NH2). We then screen a series of biocompatible, pH-sensitive zeolitic imidazolate frameworks (ZIFs) for their ability to retain cisplatin in healthy parts of the patient and release it in the vicinity of a tumor. Pure-component GCMC simulations show that the maximum cisplatin loading depends on the pore volume. To achieve this maximum loading in the presence of water, either the pore size needs to be large enough to occupy both cisplatin and its solvation shell or the MOF-cisplatin interaction must be more favorable than the cisplatin-shell interaction. Both solvated and non-solvated simulations show that cisplatin release rates can be controlled by either decreasing the pore limiting diameters or by manipulating framework-cisplatin interaction energies to create strong, dispersed adsorption sites. The latter method is preferable if cisplatin loading is performed from solution into a pre-synthesized framework as weak interaction energies and small pore window diameters will hinder cisplatin uptake. Here, ZIF-82 is most promising. If it is possible to load cisplatin during crystallization, ZIF-11 would outcompete the other MOFs screened as cisplatin cannot pass through its pore windows; therefore, release rates would be purely driven by the pH triggered framework degradation.


Assuntos
Cisplatino/química , Imidazóis/química , Estruturas Metalorgânicas/química , Zeolitas/química , Modelos Moleculares
11.
Biochem J ; 477(18): 3599-3612, 2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-32869839

RESUMO

Among the major challenges in the development of biopharmaceuticals are structural heterogeneity and aggregation. The development of a successful therapeutic monoclonal antibody (mAb) requires both a highly active and also stable molecule. Whilst a range of experimental (biophysical) approaches exist to track changes in stability of proteins, routine prediction of stability remains challenging. The fluorescence red edge excitation shift (REES) phenomenon is sensitive to a range of changes in protein structure. Based on recent work, we have found that quantifying the REES effect is extremely sensitive to changes in protein conformational state and dynamics. Given the extreme sensitivity, potentially this tool could provide a 'fingerprint' of the structure and stability of a protein. Such a tool would be useful in the discovery and development of biopharamceuticals and so we have explored our hypothesis with a panel of therapeutic mAbs. We demonstrate that the quantified REES data show remarkable sensitivity, being able to discern between structurally identical antibodies and showing sensitivity to unfolding and aggregation. The approach works across a broad concentration range (µg-mg/ml) and is highly consistent. We show that the approach can be applied alongside traditional characterisation testing within the context of a forced degradation study (FDS). Most importantly, we demonstrate the approach is able to predict the stability of mAbs both in the short (hours), medium (days) and long-term (months). The quantified REES data will find immediate use in the biopharmaceutical industry in quality assurance, formulation and development. The approach benefits from low technical complexity, is rapid and uses instrumentation which exists in most biochemistry laboratories without modification.


Assuntos
Anticorpos Monoclonais/química , Conformação Proteica , Estabilidade Proteica , Espectrometria de Fluorescência
12.
Phys Med Biol ; 65(8): 085010, 2020 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-32059200

RESUMO

A novel meshless reconstruction algorithm for digital tomosynthesis (DT) is presented and assessed against experimental data. The algorithm does not require a three-dimensional grid or mesh allocation and performs a slice-by-slice reconstruction where each slice position can be chosen at runtime. The methodology is based on the filtered backprojection algorithm adapted to DT. However, in the traditional approach the backprojection comes first and the filtering follows. Because the backprojection requires ray tracing, in our case it is replaced with an equivalent image mapping procedure. The idea to swap the filtering and backprojection had been introduced earlier for computerized tomography (CT). Here we use this idea but develop it differently. Contrary to CT imaging, where the source and detector are rotated, in DT the subject and the flat panel detector are fixed in space. This imaging geometry allows reconstruction in planes parallel to the flat panel detector, which results in a significant simplification of the filter of backprojection algorithm. Moreover, the algorithm is not memory demanding and can be used with very large datasets. Two versions of the meshless algorithm are presented. One of them is based on convolution type filtering, while another uses filtering in the Fourier domain. Both versions are assessed and compared against the cone beam algorithm.


Assuntos
Algoritmos , Osso e Ossos/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Arcada Osseodentária/diagnóstico por imagem , Imagens de Fantasmas , Tomografia Computadorizada por Raios X/métodos , Humanos , Imageamento Tridimensional/métodos
13.
R Soc Open Sci ; 6(7): 182158, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31417704

RESUMO

Previous work has shown a strong correlation between zeolite framework flexibility and the nature of structural symmetry and phase transitions. However, there is little experimental data regarding this relationship, in addition to how flexibility can be connected to the synthesis of these open-framework materials. This is of interest for the synthesis of novel zeolites, which require organic additives to permutate the resulting geometry and symmetry of the framework. Here, we have used high-pressure powder X-ray diffraction to study the three zeolites: Na-X, RHO and ZK-5, which can all be prepared using 18-crown-6 ether as an organic additive. We observe significant differences in how the occluded 18-crown-6 ether influences the framework flexibility-this being dependent on the geometry of the framework. We use these differences as an indicator to define the role of 18-crown-6 ether during zeolite crystallization. Furthermore, in conjunction with previous work, we predict that pressure-induced symmetry transitions are intrinsic to body-centred cubic zeolites. The high symmetry yields fewer degrees of freedom, meaning it is energetically favourable to lower the symmetry to facilitate further compression.

14.
Eur J Immunol ; 49(7): 1052-1066, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31091334

RESUMO

The HLA-A*02:01-restricted decapeptide EAAGIGILTV, derived from melanoma antigen recognized by T-cells-1 (MART-1) protein, represents one of the best-studied tumor associated T-cell epitopes, but clinical results targeting this peptide have been disappointing. This limitation may reflect the dominance of the nonapeptide, AAGIGILTV, at the melanoma cell surface. The decapeptide and nonapeptide are presented in distinct conformations by HLA-A*02:01 and TCRs from clinically relevant T-cell clones recognize the nonapeptide poorly. Here, we studied the MEL5 TCR that potently recognizes the nonapeptide. The structure of the MEL5-HLA-A*02:01-AAGIGILTV complex revealed an induced fit mechanism of antigen recognition involving altered peptide-MHC anchoring. This "flexing" at the TCR-peptide-MHC interface to accommodate the peptide antigen explains previously observed incongruences in this well-studied system and has important implications for future therapeutic approaches. Finally, this study expands upon the mechanisms by which molecular plasticity can influence antigen recognition by T cells.


Assuntos
Epitopos Imunodominantes/metabolismo , Imunoterapia Adotiva/métodos , Antígeno MART-1/metabolismo , Melanoma/imunologia , Peptídeos/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T/imunologia , Aminoácidos , Apresentação de Antígeno , Sítios de Ligação , Células Cultivadas , Células Clonais , Antígeno HLA-A2/química , Antígeno HLA-A2/metabolismo , Humanos , Ativação Linfocitária , Antígeno MART-1/química , Melanoma/terapia , Peptídeos/química , Ligação Proteica , Conformação Proteica , Receptores de Antígenos de Linfócitos T/genética , Linfócitos T/transplante
15.
Biochemistry ; 58(18): 2362-2372, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-30964996

RESUMO

There is an increasing realization that structure-based drug design may show improved success by understanding the ensemble of conformations accessible to an enzyme and how the environment affects this ensemble. Human monoamine oxidase B (MAO-B) catalyzes the oxidation of amines and is inhibited for the treatment of both Parkinson's disease and depression. Despite its clinical importance, its catalytic mechanism remains unclear, and routes to drugging this target would be valuable. Evidence of a radical in either the transition state or the resting state of MAO-B is present throughout the literature and is suggested to be a flavin semiquinone, a tyrosyl radical, or both. Here we see evidence of a resting-state flavin semiquinone, via absorption redox studies and electron paramagnetic resonance, suggesting that the anionic semiquinone is biologically relevant. On the basis of enzyme kinetic studies, enzyme variants, and molecular dynamics simulations, we find evidence for the importance of the membrane environment in mediating the activity of MAO-B and that this mediation is related to the protein dynamics of MAO-B. Further, our MD simulations identify a hitherto undescribed entrance for substrate binding, membrane modulated substrate access, and indications for half-site reactivity: only one active site is accessible to binding at a time. Our study combines both experimental and computational evidence to illustrate the subtle interplay between enzyme activity and protein dynamics and the immediate membrane environment. Understanding key biomedical enzymes to this level of detail will be crucial to inform strategies (and binding sites) for rational drug design for these targets.


Assuntos
Membrana Celular/química , Flavina-Adenina Dinucleotídeo/análogos & derivados , Simulação de Dinâmica Molecular , Monoaminoxidase/química , Sítios de Ligação , Domínio Catalítico , Membrana Celular/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Flavina-Adenina Dinucleotídeo/química , Flavina-Adenina Dinucleotídeo/metabolismo , Humanos , Cinética , Monoaminoxidase/metabolismo , Oxirredução , Ligação Proteica
16.
Molecules ; 24(3)2019 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-30759754

RESUMO

The roles of organic additives in the assembly and crystallisation of zeolites are still not fully understood. This is important when attempting to prepare novel frameworks to produce new zeolites. We consider 18-crown-6 ether (18C6) as an additive, which has previously been shown to differentiate between the zeolite EMC-2 (EMT) and faujasite (FAU) frameworks. However, it is unclear whether this distinction is dictated by influences on the metastable free-energy landscape or geometric templating. Using high-pressure synchrotron X-ray diffraction, we have observed that the presence of 18C6 does not impact the EMT framework flexibility-agreeing with our previous geometric simulations and suggesting that 18C6 does not behave as a geometric template. This was further studied by computational modelling using solid-state density-functional theory and lattice dynamics calculations. It is shown that the lattice energy of FAU is lower than EMT, but is strongly impacted by the presence of solvent/guest molecules in the framework. Furthermore, the EMT topology possesses a greater vibrational entropy and is stabilised by free energy at a finite temperature. Overall, these findings demonstrate that the role of the 18C6 additive is to influence the free energy of crystallisation to assemble the EMT framework as opposed to FAU.


Assuntos
Zeolitas/química , Éteres de Coroa/química , Cristalização/métodos , Pressão , Temperatura , Difração de Raios X/métodos
17.
RSC Adv ; 9(25): 14382-14390, 2019 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-35519296

RESUMO

Metal-organic frameworks (MOF) comprising metal nodes bridged by organic linkers show great promise because of their guest-specific gas sorption, separation, drug-delivery, and catalytic properties. The selection of metal node, organic linker, and synthesis conditions in principle offers engineered control over both structure and function. For MOFs to realise their potential and to become more than just promising materials, a degree of predictability in the synthesis and a better understanding of the self-assembly or initial growth processes is of paramount importance. Using cobalt succinate, a MOF that exhibits a variety of phases depending on synthesis temperature and ligand to metal ratio, as proof of concept, we present a molecular Monte Carlo approach that allows us to simulate the early stage of MOF assembly. We introduce a new Contact Cluster Monte Carlo (CCMC) algorithm which uses a system of overlapping "virtual sites" to represent the coordination environment of the cobalt and both metal-metal and metal-ligand associations. Our simulations capture the experimentally observed synthesis phase distinction in cobalt succinate at 348 K. To the best of our knowledge this is the first case in which the formation of different MOF phases as a function of composition is captured by unbiased molecular simulations. The CCMC algorithm is equally applicable to any system in which short-range attractive interactions are a dominant feature, including hydrogen-bonding networks, metal-ligand coordination networks, or the assembly of particles with "sticky" patches, such as colloidal systems or the formation of protein complexes.

18.
Acta Crystallogr D Struct Biol ; 74(Pt 9): 861-876, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-30198897

RESUMO

Two of the world's most neglected tropical diseases, human African trypanosomiasis (HAT) and Chagas disease, are caused by protozoan parasites of the genus Trypanosoma. These organisms possess specialized metabolic pathways, frequently distinct from those in humans, which have potential to be exploited as novel drug targets. This study elucidates the structure and function of L-threonine-3-dehydrogenase (TDH) from T. brucei, the causative pathogen of HAT. TDH is a key enzyme in the metabolism of L-threonine, and an inhibitor of TDH has been shown to have trypanocidal activity in the procyclic form of T. brucei. TDH is a nonfunctional pseudogene in humans, suggesting that it may be possible to rationally design safe and specific therapies for trypanosomiasis by targeting this parasite enzyme. As an initial step, the TDH gene from T. brucei was expressed and the three-dimensional structure of the enzyme was solved by X-ray crystallography. In multiple crystallographic structures, T. brucei TDH is revealed to be a dimeric short-chain dehydrogenase that displays a considerable degree of conformational variation in its ligand-binding regions. Geometric simulations of the structure have provided insight into the dynamic behaviour of this enzyme. Furthermore, structures of TDH bound to its natural substrates and known inhibitors have been determined, giving an indication of the mechanism of catalysis of the enzyme. Collectively, these results provide vital details for future drug design to target TDH or related enzymes.


Assuntos
Oxirredutases do Álcool/química , Oxirredutases do Álcool/metabolismo , Simulação por Computador , Trypanosoma brucei brucei/enzimologia , Cristalografia por Raios X , Humanos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Treonina/metabolismo
19.
Front Immunol ; 9: 674, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29696015

RESUMO

T-cell immunity is controlled by T cell receptor (TCR) binding to peptide major histocompatibility complexes (pMHCs). The nature of the interaction between these two proteins has been the subject of many investigations because of its central role in immunity against pathogens, cancer, in autoimmunity, and during organ transplant rejection. Crystal structures comparing unbound and pMHC-bound TCRs have revealed flexibility at the interaction interface, particularly from the perspective of the TCR. However, crystal structures represent only a snapshot of protein conformation that could be influenced through biologically irrelevant crystal lattice contacts and other factors. Here, we solved the structures of three unbound TCRs from multiple crystals. Superposition of identical TCR structures from different crystals revealed some conformation differences of up to 5 Å in individual complementarity determining region (CDR) loops that are similar to those that have previously been attributed to antigen engagement. We then used a combination of rigidity analysis and simulations of protein motion to reveal the theoretical potential of TCR CDR loop flexibility in unbound state. These simulations of protein motion support the notion that crystal structures may only offer an artifactual indication of TCR flexibility, influenced by crystallization conditions and crystal packing that is inconsistent with the theoretical potential of intrinsic TCR motions.


Assuntos
Regiões Determinantes de Complementaridade , Receptores de Antígenos de Linfócitos T/química , Simulação por Computador , Cristalização , Cristalografia por Raios X , Conformação Proteica
20.
R Soc Open Sci ; 4(9): 170757, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28989777

RESUMO

The flexibility window in zeolites was originally identified using geometric simulation as a hypothetical property of SiO2 systems. The existence of the flexibility window in hypothetical structures may help us to identify those we might be able to synthesize in the future. We have previously found that the flexibility window in silicates is connected to phase transitions under pressure, structure amorphization and other physical behaviours and phenomena. We here extend the concept to ordered aluminosilicate systems using softer 'bar' constraints that permit additional flexibility around aluminium centres. Our experimental investigation of pressure-induced amorphization in sodalites is consistent with the results of our modelling. The softer constraints allow us to identify a flexibility window in the anomalous case of goosecreekite.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...